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LINEAR RELATIONSHIPS TO ASSIST IN PARAMETER
SELECTION OF A CUSUM CONTROL CHART

Abstract: The cumulative sum (CUSUM) chart is widely employed in quality
control. These charts are designed to exhibit acceptable average run lengths
(ARL) both when the process is in and out of control. For such a chart, for
specified ARLs, this paper introduces a technique employing a simple linear
approximation for parameter selection. Graphs are produced to provide the
coefficients for the fit. The simplicity of this approach should encourage its
adoption as an additional tool in the statistical process control kit.
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 1. INTRODUCTION

 An effective way of monitoring a quantitative
measure of a continuously operating manufacturing
system is to employ a CUSUM control chart. Given an
acceptable process mean am , the aim is to detect
rapidly significant deviations to a barely tolerable mean

rm ,  any  worse  being  rejected,  where ar mm > . The
suffix “a” denotes acceptance, while “r” denotes
rejection, this notation follows that of Kemp (1962).
This paper has the following structure. Having outlined
the problem the bounds on the ARLs associated with the
acceptance/rejection cases are found. A special case is
employed as a motivating example, linear fits being
derived for the parameters. These are extended by
employing graphical estimation for the linear
parameters of the fits. A detailed comparison is made to
alternate methods that are more cumbersome. Finally
additional examples are presented and possible
extensions considered.

2. BACKGROUND DISCUSSION

 This problem has been previously outlined (Cox,
2003/4) which contains a general introduction and
motivation for the problem. Those interested in details
of the numerical integration employing Gaussian knot
points see Cox (2010). The notation previously used is
employed, only key terms being redefined below.
The  CUSUM  at  time t  is written following Woodall
(1986) the two-sided chart may be expressed as two
one-sided charts. For standardised variables,

( )kzUU ttt -+= -1,0max ,
( )kzLL ttt ++= -1,0min .

An out of control signal is produced if hU t ³ ,  or  if
hLt -£ . Where k is referred to as the reference value

and h as the threshold. This paper employs the one-

sided CUSUM chart approach. The average number of
samples tested before a change is detected, or before a
false alarm is sent if the process has not changed, is
termed the ARL. A high ARL ( )aL  is desired when the

process mean is at the acceptable level am ,  and a low
ARL ( )rL  when  the  process  mean  moves  off  to  a

rejectable level rm . The intention of the chart is to
detect a shift of D , where ar mmD -= . aL  is

usually fixed at several hundreds, while rL  is generally
between 3 and 10.

Bounds On Lr Given La
The original nomogram (Kemp 1962) or an

alternative approach (Cox 2003/4) may be employed to
provide acceptable ranges for aL  and rL . In other
words for given aL  what range of values could rL
achieve? The procedure to find estimates of k and h for
given rL  and aL  is fully described in the previous
paper.  It  is  the  polynomials  from Tables  3,  4,  5  and  6
(Cox 2003/4) that are employed here. An exhaustive
approach is adopted, given rL  and aL  if h and k can
be found then the ARLs are acceptable. The resulting
acceptable range for rL  given aL  is presented in
Figure 1.
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Figure 1-Bounds On Lr Given La
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So, for example if aL  is 500, then rL  must lie in
the range [2.42, 12.63] more sensibly rounded to [3, 12].
For practical purposes the smooth curves will usually be
rounded to integer values contained between the two
curves. This is for convenience, run lengths are integers
but  their  average  need  not  be.  It  is  only  the rL aL
pairs within the bounds that are acceptable.
Within the constraints provided by the bounds in Figure
1 it is desired to obtain parameter estimates consistent
with given ARLs. To investigate the relationship
between k and the ARL a series of solutions were found
for 52 ££ h  in 101 steps, where the range selected
duplicates that of the popular nomogram presented by
Kemp (1962). La takes values from 100 to 1000, integer
values of Lr consistent  with  the  above  plot,  are
examined.
The numerical procedure is extremely time consuming.
Given required values of La and Lr an estimate of k
(ka = k and kr = -k) corresponding to the initial value of
h (h = 2) is provided. The non-linear equation
corresponding to the ARLs are solved successively
using a modification of the Powell (1970) hybrid
method to obtain estimates of ka and kr. It should be
recalled that each functional evaluation involves
inverting a 150x150 matrix! The current estimates of ka
and kr are fed forward as starting estimates
corresponding to the next value of h. The final estimates
provided the values for the plots and tables presented
below.  As  an  illustration  a  special  case  is  now
considered.
Parameter Estimation For La=100 and Lr=10
Consider 100=aL  and 10=rL , these values may be
achieved with a number of different parameter estimates
(ka,kr,h). Certain linear relationships become very clear
in the following graphs (Figures 2, 3 and 4) that
summarise the solutions.
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Figure 2- For La=100 And Lr=10 The Relationship
Between ln(ka) And kr For h In [2,5]

It is important to assess the linearity of this plot, linear
regression is employed and R2 reported. R2 is called the
coefficient of determination; a value of 100% indicates
a perfect linear fit. For Figure 2 the results are

k2.660.176-)ln(k ra +=  and R2 = 99.2%.
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Figure 3 - For La=100 And Lr=10 The Relationship
Between ln(ka) And h

For Figure 3 the results are h0.451-0.602)ln(ka =
and R2 = 99.9%.
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Figure 4 - For La=100 And Lr=10 The Relationship
Between kr And h

For Figure 4 the results  are h0.167-0.286k r =  and
R2 = 98.6%. Thus in these cases it is reasonable to
assume a linear relationship between (kr,ln(ka)),
(h,ln(ka)) and (h,kr). But is this linearity extendable?
It is of interest to see how these parameters are affected
by changing ra LL and . For 100=aL  and 4=rL
the corresponding results are
ln(ka) = 0.625 + 1.50 kr, R2 = 100.0%,
ln(ka) = 0.602 - 0.451 h, R2 = 99.9%,
kr = - 0.0156 - 0.300 h, R2 = 99.9%.
While for 1000=aL  and 10=rL  the corresponding
results are
ln(ka) = 0.301 + 1.84 kr, R2 = 99.9%,
ln(ka) = 0.832 - 0.310 h, R2 = 99.3%,
kr = 0.286 - 0.167 h, R2 = 98.6%.

While the linearity is preserved the relationship
between the parameters (gradient and intercept) exhibits
no obvious consistency on adjusting the ARLs.
Extending the analysis to additional ARLs, more
detailed results may be produced.
 Deriving The Linear Fit Parameters

To investigate the general problem, following the
results obtained above, tables were constructed.
An exhaustive analysis is not essential. Sufficient data is
only required to derive descriptive coefficients. Points
were chosen to provide paths of equal values of La/Lr
through the tables, the results are presented in Tables
1,…,6.
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Table 1 - The Constant In The Linear Fit ln(ka)=constant + gradient h
La

100 175 250 375 500 625 750 875 1000

Lr

3 0.658 0.744 0.796 0.832

4 0.602

5 0.658 0.744 0.796 0.832

7 0.796 0.815 0.832

8 0.707 0.744 0.772

9 0.621 0.658

10 0.602 0.744 0.832

11 0.796 0.832

12 0.744

14 0.658

16 0.602

Average 0.602 0.621 0.658 0.707 0.744 0.772 0.796 0.815 0.832

Table 2- The Gradient In The Linear Fit ln(ka)=constant + gradient h
La

100 175 250 375 500 625 750 875 1000

Lr

3 -0.359 -0.328 -0.317 -0.310
4 -0.451
5 -0.359 -0.328 -0.317 -0.310
7 -0.317 -0.313 -0.310
8 -0.339 -0.328 -0.321
9 -0.384 -0.359

10 -0.451 -0.328 -0.310
11 -0.317 -0.310
12 -0.328
14 -0.359
16 -0.451

Average -0.451 -0.384 -0.359 -0.339 -0.328 -0.321 -0.317 -0.313 -0.310

Table 3- R2 For The Linear Fit ln(ka)=constant + gradient h
La

100 175 250 375 500 625 750 875 1000

Lr

3 99.6 99.5 99.4 99.3
4 99.9
5 99.6 99.5 99.4 99.3
7 99.4 99.4 99.3
8 99.5 99.5 99.4
9 99.7 99.6

10 99.9 99.5 99.3
11 99.4 99.3
12 99.5
14 99.6
16 99.9



162 M. A. A. Cox

Table 4- The Constant In The Linear Fit kr=constant + gradient h
La

100 175 250 375 500 625 750 875 1000 Average

Lr

3 -0.111 -0.111 -0.111 -0.111 -0.111
4 -0.016 -0.016
5 0.058 0.058 0.058 0.058 0.058
7 0.167 0.167 0.167 0.167
8 0.211 0.211 0.211 0.211
9 0.250 0.250 0.250

10 0.286 0.286 0.286 0.286
11 0.318 0.318 0.318
12 0.347 0.347
14 0.399 0.399
16 0.445 0.445

In summary, the coefficients of determination (Tables 3
and 6) support the assumption of a linear relationship. It
is also clear that ( )hLkk aaa ,=  (Tables  1  and  2)

being independent of Lr, while ( )hLkk rrr ,=  (Tables
4 and 5) being independent of La. This independence

will go some way to indicating why numerical
procedures experience problems when solving the
problem. Simple interpolation may be employed to
derive estimates of the coefficients not included in the
tables.

  Table 5 - The Gradient In The Linear Fit kr=constant + gradient h
La

100 175 250 375 500 625 750 875 1000 Average

Lr

3 -0.397 -0.397 -0.397 -0.397 -0.397
4 -0.300 -0.3
5 -0.249 -0.249 -0.249 -0.249 -0.249
7 -0.198 -0.198 -0.198 -0.198
8 -0.184 -0.184 -0.184 -0.184
9 -0.174 -0.174 -0.174

10 -0.167 -0.167 -0.167 -0.167
11 -0.162 -0.162 -0.162
12 -0.159 -0.159
14 -0.154 -0.154
16 -0.151 -0.151

Table 6 - R2 For The Linear Fit kr=constant + gradient h
La

100 175 250 375 500 625 750 875 1000

Lr

3 100.0 100.0 100.0 100.0
4 99.9
5 99.8 99.8 99.8 99.8
7 99.4 99.4 99.4
8 99.1 99.1 99.1
9 98.9 98.9

10 98.6 98.6 98.6
11 98.4 98.4
12 98.2
14 97.8
16 97.5

It is necessary to generate linear coefficients for all
acceptable ARLs. This is done employing the graphs
(Figures 5,…,9) below, which summarise the results  in
the previous tables. The figures provide a natural aid for

interpolation.
Graphical Estimation Of The Linear

Parameters
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Figure 5 - The Relationship Between La And The
Constant In The Linear Fit
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To aid the estimation process, a log/log plot is produced
of Figure 5.

-0.55

-0.45

-0.35

-0.25

-0.15

4 5 6 7

ln(La )

ln
(c

on
st

an
t)

Figure 7 - A Logarithmic Plot Of The Relationship
Between La And The Constant In The Linear Fit
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Figure 8 - The Relationship Between Lr And The
Constant In The Linear Fit
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Figure 9 -The Relationship Between Lr And The
Gradient In The Linear Fit

 A numerical example is employed to illustrate the
procedure.

3. EXAMPLE

Recall the estimates obtained for 100=aL  and

10=rL .
ln(ka) = 0.602 - 0.451 h, R2 =  99.9% (from Tables  1,  2
and 3 or Figures 5 and 6 or 7 for the parameters)
kr = 0.286 - 0.167 h, R2 = 98.6% (from Tables 4, 5 and 6
or Figures 8 and 9 for the parameters) On eliminating h
it is found that ln(ka) = -0.170 + 2.70 kr remarkably
close  to  the  line  produced  on  deriving  a  direct  fit
ln(ka) = - 0.176 + 2.66 kr, (Figure 2) so the procedure is
reliable. Given ra LL and  a relationship can be

derived between ra kk and  using Tables 1, 2, 4 and 5
or  Figures  5,  6,  8  and  9.  This  may  be  solved  for  the
optimal situation ( )ra kk =  or to derive ra kk and
for given h. In this case the optimal situation
corresponds to 338.0=k , thus h = 3.738 where the
problem (ln(ka) = -0.170 + 2.70 kr, ka = k and kr = -k)
may be solved iteratively, for instance using the solve
option within Excel (available from the author), or
graphically. This should be compared with k = 0.35 and
h =  3.73 from Cox (2003/4) and may be checked using
available spreadsheet code (Cox 1999) giving La = 101
and Lr = 10, an acceptable agreement. A comparison
with the previous procedure (Cox 2003/4) revealed at
most a 2% variation in estimates of k and 3% for h. The
current approach has a greater range of applicability as
demonstrated by the following examples.

The following examples exhibit reasonable results
beyond the scope of Cox (2003/4). For 100=aL  and

3=rL , the estimates obtained were 818.0=k  and
h = 1.781, on checking the ARL values were 85=aL
and 3=rL . For 375=aL  and 14=rL , the
estimates obtained were 372.0=k  and h = 5.005, on



164 M. A. A. Cox

checking the ARL values were 335=aL  and

13=rL , a reasonable performance.

4. EXTENSIONS

It is important to see if the approach has a wider
range of application. Consider extending the range for h
to [2,10]. The same ARLs adopted for Figures 2, 3 and
4, La = 100 Lr = 10, are presented here in Figures 10, 11
and 12.
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Figure 10 - For La=100 And Lr=10 The Relationship
Between ln(ka) And kr For h In [2,10]
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Figure 11 - For La=100 And Lr=10 The Relationship
Between ln(ka) And h
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Statistical analysis is not necessary; the non-linearity of
Figures 10 and 11 is self-evident. Was the range
adopted for the original nomograms (Kemp 1962)
fortuitous?
 A comparison to an alternate approach is now

presented.

5. COMPARISON TO OTHER APPROACHES

 In Rogerson (2006) very complex formulas were
developed to solve the equivalent problem. The exact
formula for k involved the LambertW function (see
Rogerson 2006), which gives technical details plus
some practical references). A greatly simplified
approximation is also given
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 The following examples are the two employed by
Rogerson (2006), who also reports the estimates of
Rossi et al. (1999). For the first example if La = 500 and
Lr = 7.
k = 0.5634 h = 3.96   La = 492 Rogerson (2006)
k = -0.5634 h = 3.96   Lr = 8 Rogerson (2006)
k = 0.6 h = 3.8    La = 521 Rossi et al. (1999)
k = -0.6 h = 3.8    Lr = 7 Rossi et al. (1999)
k = 0.60 h = 3.85  La = 554 the methods proposed here
k = -0.60 h = 3.85  Lr = 7 the methods proposed here
 The calculated ARLs were found using published
procedures (Cox 1999). Extending the precision of the
results reported here gives k = 0.6062 and h = 3.7310 as
the values, corresponding to the desired ARL values. It
should be noted that estimated ARL values are highly
dependent on the precise values of the parameters
selected, for example k = 0.59 and h = 3.72 gives
La = 443 while k = 0.61 and h = 3.74 gives La = 518.
As a rule of thumb it is suggested that the selected
parameters lie in the range k±0.015k and h±0.015h so
±1.5% in each case. The estimate of Lr is fairly robust to
these changes, adopting these slight adjustments is
reflected in the estimate of La.
 For the second example if La = 500 and Lr = 3.
k = 0.96 h = 2.39   La = 470Rogerson (2006)
k = -0.96 h = 2.39   Lr = 3 Rogerson (2006)
k = 1.04 h = 2.26   La = 531Rossi et al. (1999)
k = -1.04 h = 2.26   Lr = 3 Rossi et al. (1999)
k =  1.01 h = 2.25   La = 451 the methods proposed here
k = -1.01 h = 2.25   Lr = 3 the methods
proposed here
 The calculated ARLs were found using published
procedures (Cox 1999). Extending the precision of the
results reported here gives k = 1.01 and h = 2.30 as the
values corresponding to the desired ARL values.
A simple scatter plot suggests, in the two cases



                                                       Vol.6, No. 2, 2012                                                                165

considered here, that the estimates of Rogerson (2006)
are furthest from the best estimate. In all cases the
rejection run lengths are consistent, while the acceptable
values differ, but are broadly similar and close to the
desired values.

6.  ALTERNATE APPROACHES

 This section is not intended as a complete review
of available software, but describes a recent
development.Knoth (2009) has provided a package
“SPC” which is implemented in the R (R Development
Core Team 2009) statistical language. R is a language
and environment for statistical computing and graphics.
The SPC package provides functions for the evaluation
of control charts by means of the zero-state, steady state
ARL. Setting up control charts for given in-control ARL
and plotting of the related figures. The control charts
under consideration are one- and two-sided
Exponentially Weighted Moving Average (EWMA),
CUSUM, and Shiryaev-Roberts schemes for monitoring
the mean of normally distributed independent data. The
ARL calculation of the same set of schemes under drift
is available. The approach determines the ARL by
numerically solving the related ARL integral equation

by means of collocation (Chebyshev polynomials,
Knoth 2005 and 2006). This approach would require
downloading, installing and learning these packages. A
little daunting for the occasional user.

7. CONCLUSIONS

 The procedures presented here give a pair of linear
equations, which quickly provide estimates of the
parameters for a CUSUM chart with desired ARLs. The
approach is reasonably accurate and more elegant than
the traditional approach employing a nomogram. The
approach exhibits similar results to those previously
reported (Cox, 2003/4) with the advantage of greater
ease of use and range of applicability.It is demonstrated
that the range of validity adopted by the nomogram is
ideal, any extension to the key parameters, ka, kr and h,
is not practical with the technique proposed here.
 A  natural  extension  would  be  to  examine  EWMA
charts whose parameters become difficult to evaluate
when the distributional parameters of quality
characteristic are estimated and the ideal assumption of
normality is violated. These charts may also be
described by the general formalism introduced earlier
(Cox 1999).
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