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NARX-SP NEURAL NETWORK MODELS 

FOR AIR QUALITY PREDICTION FOR THE 

24TH AND 48TH HOUR AHEAD  
 

Abstract: Neural networks are important method of machine 

learning that can be used to predict air quality with high 

accuracy. Using NARX-SP neural network type, several neural 

network models are developed to predict concentration of air 

pollutants in Sarajevo for two prediction cases, for 24th and 

48th hour ahead, with different combinations of inputs and 

outputs. The data used in this paper contain hourly values of 

meteorological parameters (air humidity, pressure and 

temperature, wind speed and direction) and concentrations of 

𝑆𝑂2, 𝑃𝑀10, 𝑁𝑂2, 𝑂3 and 𝐶𝑂 from 2016 to 2018. Optimal 

models are selected for both prediction cases. It is concluded 

that the optimal models have very good performances and can 

be used to predict concentration of pollutants in Sarajevo with 

great accuracy and contribute to improve quality of life. By 

adequate application of optimal models, concentration of air 

pollutants can be predicted for each hour over the next 48 

hours. 

Keywords: Neural networks; NARX-SP; Air quality; 

Concentration of air pollutants; Prediction 

 

1. Introduction  
 

Neural networks are used in many fields like 

engineering, medicine, economics, artificial 

intelligence, as well as in the field of air 

quality prediction, where they are being 

established as an effective prediction tool. 

One of the measures to protect human health 

and to improve quality of life from the 

harmful effects of air pollutants is an early 

warning, which can be achieved by predicting 

the concentration of pollutants using neural 

networks. 

Sarajevo, the capital of Bosnia and 

Herzegovina, faces a major problem of air 

pollution, so the prediction of the 

concentration of air pollutants in Sarajevo is 

very important to protect human health 

against the effects of harmful pollutants. In 

this paper neural network models are 

developed that effectively predict the air 

quality in Sarajevo, for prevention and 

protection purposes. 

The importance of predicting air quality is 

highlighted in many papers. Wen et al. (2019) 

emphasizes that the prediction of air pollution 

is of great importance for people in terms of 

day-to-day health monitoring, as well as for 

competent institutions in terms of making 

appropriate decisions. Li et al. (2017) also 

emphasized the importance of this problem, 

where it was pointed out that the prediction of 

air pollution is an effective method of 

protecting public health, as it provides early 

warnings for elevated concentration of air 

pollutants. 

Air quality depends on meteorological 

conditions (Wang et al., 2013) and pollutant 

sources (Urbanski et al., 2011). Sources of 

pollutants produce pollutants, while 
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meteorological conditions affect the transfer 

and diffusion of these pollutants in the 

atmosphere (Bai et al., 2016). 

The problem of air pollution needs to be 

considered very seriously, as pollutants have 

a very harmful effect on human health and the 

entire social community. According to the 

British Lung Foundation, pollutants that are 

most hazardous to human health are 

particulate matter (𝑃𝑀10, 𝑃𝑀2,5), ozone at 

ground level (𝑂3), carbon monoxide (𝐶𝑂) and 

sulfur dioxide (𝑆𝑂2). High concentrations of 

these pollutants can cause many diseases, 

including lung disease (asthma, bronchitis, 

chronic obstructive pulmonary disease, lung 

cancer, etc.), heart disease, heart attack and 

stroke (British Lung Foundation, 2017). 

He et al. (2013) concluded that 

meteorological conditions play an essential 

role in the daily fluctuation of pollutants. As 

a result, more scientists predict air quality 

depending on meteorological parameters 

through various scientific approaches, such as 

statistical models (Ozel & Cakmakyapan, 

2015), artificial neural networks (ANN) 

(Feng et al., 2015), the grey model (Pai et al., 

2013) and others. The neural network, as a 

very efficient prediction method, has shown 

great dominance in the field of prediction and 

analysis of air quality (Bai et al., 2016). 

De Gennaro et al. (2013) developed an ANN 

to predict daily values of 𝑃𝑀10 at two 

locations in the Western Mediterranean 

(Montseny and Barcelona) depending on 

local meteorological parameters. Wu et al. 

(2011) developed an Elman neural network 

for predicting air pollution index (API) values 

for an urban area of Wuhan, China, based on 

daily temperature, relative humidity, wind 

speed, pressure, precipitation, and duration of 

sunny periods. Prediction of 𝑆𝑂2, 𝑁𝑂2 and 𝑂3 

depending on meteorological parameters (air 

temperature, wind speed, atmospheric 

pressure, air humidity) in the city of Konya, 

Turkey using the ANN and ANFIS method is 

presented by Dursun et al. (2015). Russo et al. 

(2013) performed air quality prediction using 

ANN for Lisbon in Portugal. In Kumar and 

Goyal (2013), an ANN based on principal 

component analysis  was developed to predict 

the air quality index based on different 

meteorological parameters for Delhi, India, 

for four annual periods (summer, monsoon, 

post-monsoon, and winter).  

There are many types of neural networks used 

to predict air quality and most of them 

produce good prediction results. However, 

according to Dorffner (1996), Lin et al. 

(1996) and Boussaada et al. (2018), NARX 

neural network is recognized as one of the 

most powerful types of neural networks. It is 

the nonlinear autoregressive exogenous 

network (NARX). The NARX neural network 

is a type of neural network that is adequate in 

working with data where the values of the 

outputs that are predicted depend on their 

values from the previous period, as well as the 

values of exogenus inputs from that period. 

The prediction model and performance of 

NARX neural networks have been addressed 

by Dorffner (1996), Lin et al. (1996) and 

Boussaada et al. (2018). In Wang and Bai 

(2014) and Pisoni et al. (2009) the use of a 

NARX neural network for air quality 

prediction has shown very good results. 

In this paper the original models of neural 

networks for air quality prediction are 

developed, which implies the prediction of 

concentration of air pollutants, with different 

structures and combinations of inputs and 

outputs of neural networks. The original 

structures and combinations of inputs and 

outputs are achieved by a different number of 

previous hours and a different hour ahead for 

which the pollutant concentrations were 

predicted, from which the prediction data are 

used. The original structures are defined by 

the number of neurons in the input, hidden 

and output layers of neural networks. With 

developed neural network models, it is 

possible to predict the concentration of 

pollutants 𝑆𝑂2,  𝑃𝑀10, 𝑁𝑂2, 𝑂3 and 𝐶𝑂 for 

Sarajevo, which has its landscape, climate 

and economic specificities, with high 

accuracy. Models are developed for 2 

prediction cases, for the 24th and 48th hour 
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ahead. For each prediction case, several 

neural network models have been developed 

that differ in the number of previous hours 

used for prediction. Based on the values of 

coefficient of determination 𝑅2 and mean 

squared error (𝑀𝑆𝐸) for the test data set, and 

based on the complexity of the model, the 

most appropriate prediction model is selected 

for each prediction case, which will be 

referred to as the optimal neural network 

model. Optimal models show high prediction 

accuracy. With optimal neural network 

model, it is possible to predict with high 

accuracy the concentration of air pollutants 

for each sequential hour ahead, including the 

hour for which the model is intended, relative 

to the current hour, by the appropriate choice 

of the referent hour. The referent hour is the 

hour relative to which the prediction is made. 

Data from the referent hour are treated as 

preliminary values for the prediction of 

pollutant concentration since they precede the 

hour for which the prediction is made. 

 

2. Theoretical background 
 

2.1. NARX neural network 

 

In this paper, a non-linear auto-regressive 

neural network with exogenous inputs, 

NARX neural network, is used. In this type of 

neural network, previous values of outputs 

and exogenous inputs are used as inputs 

(Abrahamsen et al., 2018). 

NARX neural network is represented by 

equation (1) (Horne et al., 2015): 

𝑦(𝑡) = 𝑓[(𝑢(𝑡 − 𝑛𝑢), … ,  

𝑢(𝑡 − 1), 𝑢(𝑡), 𝑦(𝑡 −  𝑛𝑦),

… , 𝑦(𝑡 −  1) 

      (1) 

where: 

𝑢(𝑡) − input to neural network at time 𝑡, 

𝑦(𝑡) − output from neural network at time 𝑡, 

𝑛𝑢 − input order, 

𝑛𝑦 − output order. 

By using previous output values as inputs to 

the neural network, NARX network can be 

modeled as a network with serial-parallel 

(NARX-SP) and parallel (NARX-P) neural 

network structure. In this paper, NARX-SP 

neural network is used to develop models for 

air quality prediction. For NARX-SP neural 

network structure, the previous output values, 

which are used as inputs to the neural 

network, are the actual output values. The 

backpropagation algorithm is used for 

training of this neural network structure (Al 

Hamaydeh, Choudhary and Assaleh, 2013). 

 

2.2.  MLP 

 

The structure of NARX-SP neural network is 

based on the principle of MLP functioning. A 

single hidden layer MLP is shown in Figure 

1. 

 

 
Figure 1. MLP with one hidden layer 

Adapted from: Marsland (2015) 

 

The principle of functioning of MLP having 

one hidden layer can be represented by 

equations (2) to (5). 

Equation (2) shows the value entering each 

hidden layer neurons and represents the sum 

of the products of the weights and the output 

values from the input layer neurons 

(Marsland, 2015). 

ℎ𝑗 = ∑ 𝑥𝑖 ∙ 𝑤𝑖𝑗

𝐿

𝑖=1

 (2) 
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Hidden layer neurons have a defined 

activation function 𝑔(ℎ𝑗) in which ℎ𝑗 is the 

input value. The output value of the hidden 

layer neurons is the result of the activation 

function 𝑔(ℎ𝑗): 

 

𝑎𝑗 = 𝑔(ℎ𝑗) (3) 
 

As for the output layer neurons, their input 

value 𝑜𝑘 is the sum of the products of the 

weights and the output value of the hidden 

layer neurons 𝑎𝑗: 

 

𝑜𝑘 = ∑ 𝑎𝑗 ∙ 𝑤𝑗𝑘

𝑀

𝑗=1

 (4) 

 

The output value from the output layer 

neurons is the result of the activation function 

𝑓(𝑜𝑘). 
 

𝑦𝑘 = 𝑓(𝑜𝑘) (5) 
 

where: 

𝑥𝑖 − output value from input layer neurons, 

ℎ𝑗 − input value to hidden layer neurons, 

𝑤𝑖𝑗 − weights between input and hidden layer 

neurons, 

𝑔(ℎ𝑗) − activation function in hidden layer 

neurons, 

𝑎𝑗  − output value from hidden layer neurons,  

𝑜𝑘  − input value to output layer neurons,  

𝑤𝑗𝑘  − weights between hidden and output 

layer neurons, 

𝑓(𝑜𝑘) − activation function in output layer 

neurons, 

𝑦𝑘  − output value from output layer neurons,  

𝑖 − the number of neurons in the input layer 

(𝑖 = 1,…, L if there is no bias, and if there is 

𝑖 =  0,…, L), 

𝑗 − the number of neurons in the hidden layer 

(𝑗 = 1,…, M if is no bias, and if there is 𝑗 = 

0,…, M), 

𝑘 − the number of neurons in the output layer 

(𝑘 = 1,…, N). 

In order to obtain the most accurate output 

value from the output layer neurons, a 

correction of the results must be performed 

using the backpropagation algorithm, which 

corrects the weights (Marsland, 2015). 

 

2.3.  Air pollutants 

 

There are many different pollutants in the air 

that have a negative impact on human health, 

environment, climate and many other areas of 

life. According to WHO report, the most 

evidence for adverse effects on human health 

exists for 𝑃𝑀, 𝑆𝑂2, 𝑁𝑂2 and 𝑂3 pollutants. In 

this paper, basic informations about 

pollutants 𝑆𝑂2, 𝑃𝑀, 𝑁𝑂2, 𝑂3, and 𝐶𝑂 that are 

the subject of prediction in this paper are 

given according to European Environment 

Agency (EEA). 

There are particles of different sizes in the air, 

but the most dangerous for human health are 

those whose diameter is equal to or less than 

10 μm, which are 𝑃𝑀10 and 𝑃𝑀2,5. It is 

extremely dangerous for lung, bloodstream 

and entire human body. 

Sulfur dioxide (𝑆𝑂2) is a colorless gas with an 

extremely pungent odor. It is threat to human 

health because it causes asthma, cough and 

bronchitis. 

Nitrogen dioxide (𝑁𝑂2) is most prevalent in 

urban areas and causes and exacerbates 

asthma, pneumonia and other lung diseases. 

Carbon monoxide (𝐶𝑂) has no color or odor 

and is very dangerous because, in increased 

concentrations, it causes death, while in 

smaller concentrations it negatively affects 

the brain, causes headache and visual 

disturbance and reduces cognitive ability. 

Ozone (𝑂3) is a secondary pollutant formed 

by the chemical reaction of primary pollutants 

𝑁𝑂2, 𝑉𝐶𝑂𝑠 and 𝐶𝐻4 in the presence of 

sunlight. Ozone is a very aggressive gas that 

causes chest pain, cough, exacerbation of 

respiratory diseases and chronic lung disease 

in humans (European Environment Agency, 

2019). 
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3. Methodology 
 

In this paper, neural network models are 

developed to predict the concentration of 

pollutants for the 24th and 48th hour ahead, 

optimal models are selected and 

performances of models are analyzed.  

For this study data obtained from the Federal 

Meteorological Institute of BiH are used for 

this research. Those are: 

• values of meteorological parameters 

– air temperature (𝑇), pressure (𝑝) 

and humidity (𝐻), wind speed (𝑣) 

and wind direction (𝑤𝑑) and 

• concentration of air pollutants (𝑆𝑂2, 

𝑃𝑀10, 𝑁𝑂2, 𝑂3 and 𝐶𝑂).  

These values are measured for every hour 

between the beginning of 2016 and the end of 

2018. For each meteorological parameter and 

for each pollutant in the air 26304 measured 

hourly values are obtained. These data are 

grouped into samples and divided into 

training, validation and test data sets. 

In order to gain a better insight into the data 

used in this work, the average monthly values 

of air pollutant concentrations for the period 

from the beginning of 2016 to the end of 2018 

are shown in Figures 2a-2e. 

  

 
                                         a)                                                                       b)   

 
                                         c)                                                                       d)   

 

Figure 2. Average monthly concentrations of air pollutants for the period from 2016 to 2018: 

a) 𝑆𝑂2, b) 𝑃𝑀10, c) 𝑁𝑂2, d) 𝑂3  
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       e) 

 

Figure 2. (continued) Average monthly concentrations of air pollutants for the period from 

2016 to 2018: e) 𝐶𝑂  

 

The aim of this paper is to develop neural 

network models to predict the 

concentration of air pollutants 𝑆𝑂2, 𝑃𝑀10, 

𝑁𝑂2, 𝑂3 and 𝐶𝑂 with the original structures 

of neural networks and different 

combinations of inputs and outputs for 

Sarajevo. Models differ from each other 

according to the selected number of previous 

hours and the hour for which the prediction is 

made. The number of inputs selected and 

therefore the number of neurons in the hidden 

layer, depends on the number of previous 

hours selected. 

As input data to the neural networks values of 

meteorological parameters, concentrations of 

pollutants, month of the year, day of week and 

time of day from the referent hour or the 

referent hour and a certain number of 

previous hours as well as the values of 

meteorological parameters, month, day and 

time for the hour for which prediction is made 

are used. 

For each developed neural network model, 

the values of 𝑅2 and 𝑀𝑆𝐸 for the model and 

for each pollutant individually for all data 

sets are calculated as indicators of the 

performance of the developed models.  

Based on the values of 𝑅2 and 𝑀𝑆𝐸 of the test 

data set, and the complexity of the model, for 

both cases the most appropriate model is 

selected, which is referred to as an optimal 

model. If there are more models whose value 

of 𝑅2 is up to 1% less than the maximum 

value of 𝑅2 and whose values of 𝑀𝑆𝐸 are of 

the same order of magnitude for the same 

prediction case, the one with the less complex 

structure is chosen as the optimal model.  

Based on the values of 𝑅2 and 𝑀𝑆𝐸 for the 

test data set, analysis and conclusions are 

made about the accuracy of prediction of 

optimal models, thereby verifying the model. 

For each optimal neural network model, the 

relationship between predicted and observed 

values for the training, validation, test and 

total data sets are graphically displayed and 

negligible deviations between predicted and 

observed values can be noticed. Based on 

that, conclusions about the accuracy of 

prediction models are confirmed.  

Values of 𝑅2 and 𝑀𝑆𝐸 are calculated 

according to the formulas (6) and (7) 

respectively (Levine et al., 2017): 

 

𝑅2 =
∑ (𝑦̂𝑖 − 𝑦)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (6) 
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2
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where: 

𝑦𝑖 − actual output value, 

𝑦 −  the mean of output value, 

𝑦̂𝑖 − the output value predicted by the model, 

𝑦̂𝑖 − sample size. 

Values of the meteorological parameters 

other than wind direction and concentration 

of air pollutants are normalized to 

interval [0,1] as shown in equation (8) 

(Marsland, 2015): 

 

𝑥𝑖
′ = (

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

)  (8) 

 

Values referring to the month of the year, day 

of the week, time of the day and the wind 

direction are normalized using sine and 

cosine functions to the interval [-1,1] as 

shown in equations (9) and (10) (Feng et al., 

2015; Russo et al., 2013): 

 

𝑥𝑖,𝑠𝑖𝑛
′ =  𝑠𝑖𝑛 (

2 ∙ 𝜋 ∙ 𝑋𝑖

𝑛
)  (9) 

 

𝑥𝑖,𝑐𝑜𝑠
′ =  𝑐𝑜𝑠 (

2 ∙ 𝜋 ∙ 𝑋𝑖

𝑛
)  (10) 

 

In order to reduce noise in the data, filtering 

of the data is done using the moving average 

method as shown in equation (11). 

 

(𝑦𝑘)𝑠 =
∑ 𝑦𝑘+𝑖

𝑖=𝑛
𝑖=−𝑛

2𝑛 + 1
 (11) 

 

where: 

(𝑦𝑘)𝑠 − filtered data at point k (𝑠 − 

smoothing), 

𝑦𝑘 − data at point k before settlement, 

𝑛 − number of data to the left and right of the 

midpoint. 

In this paper for the filtering of the data, the 

value of 𝑛 = 2 is chosen. 

From the available database, for each neural 

network model, appropriate data samples are 

created, depending on the number of previous 

hours and the hour for which the prediction is 

made in that model, from which the 

prediction data are used. Each sample 

consists of meteorological parameter values, 

concentration of pollutants, month, day and 

time of day from the referent hour or referent 

hour and the certain number of its previous 

hours defined for that model, such as 

meteorological parameter values, month, day 

and time of day and the concentration of 

pollutants for the predicted hour, which is 

defined by the neural network model.  

To allow the proper learning of neural 

networks, samples are permuted before the 

development of the neural network model. 

After permutation, samples are divided into 

training, validation and test data sets in the 

proportion of 60:20:20 respectively.  

For both cases, 5 neural network models are 

developed. In the development of the models 

for the prediction for 24th hour ahead, the data 

from the referent hour or referent hour and its 

previous 11, 23, 35 and 47 hours depending 

on the model are used sa inputs as well as the 

data from the hour for which the prediction is 

made. The prediction for the 48th hour ahead 

used data from the referent hour or referent 

hour and its previous 23, 35, 47 and 71 hours 

depending on the model and data from the 

hour for which the prediction is made. In the 

prediction case for the 48th hour ahead, model 

that uses, among other data, the data from the 

referent hour and its previous 11 hours is not 

developed, because for this model values of 

𝑅2 and 𝑀𝑆𝐸 are not satisfactory like in the 

prediction case for the 24th hour ahead.  

Tables 1 and 2 show the structures of the 

developed neural network models for 

prediction of pollutant concentrations for 24th 

and 48th hour ahead. 

 

 

 



 

584                                                  M. Pasic, I. Bijelonja 

Table 1. Structures of neural network models for the 24th hour ahead 

Model Number of previous hours Structure 

1 Referent hour 29-59-5 

2 Referent hour + 11 previous hours 216-433-5 

3 Referent hour + 23 previous hours 432-865-5 

4 Referent hour + 35 previous hours 636-1273-5 

5 Referent hour + 47 previous hours 864-1729-5 

 

Table 2. Structures of neural network models for the 48th hour ahead 

Model Number of previous hours Structure 

1 Referent hour 29-59-5 

2 Referent hour + 23 previous hours 432-865-5 

3 Referent hour + 35 previous hours 636-1273-5 

4 Referent hour + 47 previous hours 864-1729-5 

5 Referent hour + 71 previous hours 1296-2593-5 

During the training of neural networks 500 

epochs with the early stopping are used as 

well as the batch size of 10, sigmoid 

activation function and Adam optimizer. The 

structure of neural networks implies the 

number of neurons in the input, hidden, and 

output layers. One hidden layer is used based 

on the Universal Approximation Theorem 

(Marsland, 2015), with the number of neurons 

determined by the Kolomogorov rule (Mu et 

al., 2017). For the development of neural 

network models and 𝑅2 and 𝑀𝑆𝐸 value 

calculation, code is created in Python using 

the Keras library. 𝑅2 and 𝑀𝑆𝐸 values for 

developed models for training, validation and 

test data sets are presented in tables 3, 4, 5 and 

6. 

 

Table 3. 𝑅2 values [%] for training, validation and test data sets for the 24th hour ahead 
Model 𝑅2_train 𝑅2_validate 𝑅2_test 

1 69,094 68,338 66,939 

2 94,057 88,975 89,246 

3 97,557 93,781 93,276 

4 97,063 93,052 94,131 

5 97,844 94,386 94,013 

 

Table 4. 𝑀𝑆𝐸 values for training, validation and test data sets for the 24th hour ahead 
Model 𝑀𝑆𝐸_train 𝑀𝑆𝐸_validate 𝑀𝑆𝐸_test 

1 0,001858922 0,001939995 0,001912858 

2 0,000349619 0,000651784 0,000670696 

3 0,000139138 0,000384891 0,000381512 

4 0,000169661 0,000396399 0,000380008 

5 0,000123130 0,000352282 0,000356418 

 

Table 5. 𝑅2 values [%] for training, validation and test data sets for the 48th hour ahead 
Model 𝑅2_train 𝑅2_validate 𝑅2_test 

1 66,599 64,629 63,304 

2 95,636 93,501 92,683 

3 95,972 93,736 94,021 

4 95,668 93,978 93,901 

5 95,273 93,054 93,098 
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Table 6. 𝑀𝑆𝐸 values for training, validation and test data sets for the 48th hour ahead 

Model 𝑀𝑆𝐸_train 𝑀𝑆𝐸_validate 𝑀𝑆𝐸_test 

1 0,002124366 0,002014800 0,002079332 

2 0,000401532 0,000262467 0,000437570 

3 0,000372393 0,000238323 0,000376697 

4 0,000355566 0,000250491 0,000354447 

5 0,000409285 0,000283736 0,000411375 

4. Result analysis and discussion 
 

Optimal models for both prediction cases are 

selected based on the values of  𝑅2 and 𝑀𝑆𝐸 

for the test data set, and based on the 

complexity of the model.  

For the 24th hour prediction case, model 4 is 

chosen as the optimal model. The value of 

𝑅2 = 66,939% for model 1 is significantly 

lower than for other models, and the value of 

𝑀𝑆𝐸 = 0,001912858 is significantly higher. 

Model 2 has values of 𝑅2 = 89,246% and 

𝑀𝑆𝐸 = 0,000670696 and its performances 

are much better than performances of model 

1. Models 3, 4 and 5 have high values of 𝑅2 

and low values of 𝑀𝑆𝐸. Model 4 has 𝑅2 =
94,131% and 𝑀𝑆𝐸 = 0,000380008 slightly 

better than 𝑅2 = 94,013% and 𝑀𝑆𝐸 =
0,000356418 of model 5. Model 4 has a 

slightly higher 𝑅2 value and a slightly higher 

value of 𝑀𝑆𝐸 than model 5. Since these 

values are approximately the same and very 

good for models 4 and 5, model 4 is chosen as 

an optimal model because it has a simpler 

structure than model 5 and is more practical 

to use. When choosing the optimal neural 

network model, if values of 𝑅2 and 𝑀𝑆𝐸 

models do not differ significantly, it is 

necessary to select a model that has a simpler 

structure. 

𝑅2 and 𝑀𝑆𝐸 values for all 5 models for the 

test data set are depicted graphically in figures 

3 and 4. 

 

 
Figure 3. 𝑅2 values [%] for test set by models for 24th hour ahead 
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Figure 4. 𝑀𝑆𝐸 values for test set by models for 24th hour ahead 

 

Values of 𝑅2 and 𝑀𝑆𝐸 for all 5 models for 

test set for 48th hour prediction case are 

plotted in Figures 5 and 6. In 48th hour 

prediction case a sharp increase in 𝑅2 can be 

observed from model 1 to model 2, with 

𝑅2 = 63,304% for model 1, to 𝑅2 =
92,683% for model 2, and a sudden decrease 

in 𝑀𝑆𝐸 with 𝑀𝑆𝐸 = 0,002079332 for 

model 1, to 𝑀𝑆𝐸 = 0,000437570  for model 

2. Models 4 and 5 which have a more 

complex neural network structure, have a 

slightly lower value of 𝑅2 than model 3, that 

can be seen from Figure 5. However, the 

𝑀𝑆𝐸 value is the lowest for model 4. Model 

3 has a slightly higher value of 𝑅2 =
94,021% than the value of 𝑅2 = 93,901%  

of model 4 and has a slightly higher value of 

𝑀𝑆𝐸 = 0,000376697 than the value of 

𝑀𝑆𝐸 = 0,000354447 of model 4. Values of 

𝑅2 and 𝑀𝑆𝐸 for models 3 and 4 are about the 

same and very good, and because model 3 

has a simpler structure, it is chosen as the 

optimal model. It can be concluded that the 

values of 𝑅2 and 𝑀𝑆𝐸 of model 3 for the test 

data set are very good. 

 

  

 
Figure 5. 𝑅2 values [%] for test set by models for 48th hour ahead 
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Figure 6. 𝑀𝑆𝐸 values for test set by models for 48th hour ahead 

 

Optimal models for both prediction cases 

have high 𝑅2 values and low 𝑀𝑆𝐸 values, so 

it can be concluded that they have high 

prediction accuracy. This can be confirmed 

in the figures where a graphical presentations 

of predicted and observed concentration 

values of all 5 pollutants is given. By 

analyzing Figure 7, it can be seen that the 

predicted values follow observed values with 

negligible deviations, thus confirming high 

prediction accuracy of optimal neural 

network models for the 24th and 48th hours 

prediction cases. For both prediction cases 

for the selected optimal neural network 

models, a graphical presentation of the 

predicted and observed values for a randomly 

selected period of 72 hours from a total 

period of three years is given, in order to give 

a clearer picture of how the values predicted 

by the model follow the observed values of 

concentration of pollutants, which is shown 

in Figure 7. 

Comparing the values of 𝑅2 and 𝑀𝑆𝐸 for the 

test data set for models that predict the 

concentration of pollutants for the 24th and 

48th hour ahead, which, in addition to other 

inputs, use data from referent hour or referent 

hour and its previous 23, 35 and 47 hours, 

slightly worse values can be observed for the 

48th hour prediction case.  

 

 

Optimal model 4 for the 24th hour prediction 

case has 𝑅2 = 94,131% and 𝑀𝑆𝐸 =
0,000380008 and uses the data from the 

referent hour and its previous 35 hours from 

the previous period. Optimal model 3 at the 

48th hour prediction case has values 𝑅2 =
94,021% and 𝑀𝑆𝐸 = 0,000376697 and 

uses the data from the referent hour and its 

previous 35 hours. It can be observed that in 

both prediction cases, with the increase of 

number of previous hours from which the   

prediction data are used, accuracy increases 

sharply by increasing 𝑅2 values to a certain 

value, then increases or even decreases 

slightly using more data from the previous 

period and by decreasing 𝑀𝑆𝐸 values sharply 

at first and then decreases or even increases 

slightly. 

This suggests that during the prediction, an 

optimal number of previous hours must be 

found to obtain satisfactory performance of 

the model with a simpler structure. 

The optimal prediction model for the 24th 

hour prediction case can predict the 

concentration of pollutants for all hours from 

the current hour to the 24th hour ahead of the 

current hour by proper selection of referent 

hour. This means that the referent hour must 

be away from the hour for which the 

prediction is made for 24 hours. The same 

analogy can be applied to the optimal model 

for the 48th hour prediction case.  
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With these two optimal models, the air 

pollutant concentration can be predicted for 

each hour over the next 48 hours. For the 

prediction of air pollutant concentrations up 

to 24th hours ahead, the optimal model for 

24th hour prediction case is used because it 

has better values of 𝑅2 and 𝑀𝑆𝐸 than the 

optimal model for 48th hour prediction case. 

For the hours from 24th to 48th hours ahead, 

the model for 48th hour prediction case is 

used. 

 
          a)                                                                      b) 

 
            c)                                                                      d) 

 
          e) 

Figure 7. Graphical presentation of the predicted and observed values for selected period of 72 

hours for 24th and 48th hour ahead a) 𝑆𝑂2, b) 𝑃𝑀10, c) 𝑁𝑂2, d) 𝑂3 and e) 𝐶𝑂

Hours 

𝐶
𝑂

 (
n
o

rm
al

is
ed

 v
al

u
es

) 

 

𝑆
𝑂

2
 (

n
o

rm
al

is
ed

 v
al

u
es

) 

 

𝑃
𝑀

1
0
 (

n
o

rm
al

is
ed

 v
al

u
es

) 

 

𝑂
3
 (

n
o

rm
al

is
ed

 v
al

u
es

) 

 

𝑁
𝑂

2
 (

n
o

rm
al

is
ed

 v
al

u
es

) 

 

          𝐶𝑂 − observed  

         𝐶𝑂 − 24 th hour ahead 

         𝐶𝑂 − 48 th hour ahead 

 

          𝑂3 − observed  

         𝑂3 − 24 th hour ahead 

         𝑂3 − 48 th hour ahead 

 

          𝑁𝑂2 − observed  

         𝑁𝑂2 − 24 th hour ahead 

         𝑁𝑂2 − 48 th hour ahead 

 

          𝑆𝑂2 − observed  

         𝑆𝑂2 − 24th hour ahead 

         𝑆𝑂2 − 48th hour ahead 

 

          𝑃𝑀10 − observed  

         𝑃𝑀10 − 24th hour ahead 

         𝑃𝑀10 − 48 th hour ahead 

 

Hours 

Hours Hours 

Hours 



 

589 

5. Conclusion  
 

Air quality is the world’s growing problem 

because it has a negative impact on human 

health. The problem is complex and requires 

many measures to be taken to improve air 

quality. Air quality is determined by the 

concentration of pollutants in the air. 

Sarajevo faces poor air quality during winter. 

The prediction of concentration of pollutants 

is imposed as a necessity in order to protect 

human health.  

In this paper, neural network models are 

developed to predict the concentration of air 

pollutants for the 24th and 48th hour ahead, 

which can predict the concentration of air 

pollutants for each hour ahead up to an hour 

for which the model is intended, including 

that hour.  

For the development of the prediction 

models, NARX-SP neural network type is 

used, where output values from the previous 

period and exogenous inputs for the same 

period are used.  

In both prediction cases, concentration of the 

same pollutants are predicted, 𝑆𝑂2, 𝑃𝑀10, 

𝑁𝑂2, 𝑂3 and 𝐶𝑂, for a different hour ahead. 

As inputs for the development of the models, 

according to the NARX-SP principles, 

concentration of these pollutants from the 

selected previous period are used with the 

values of meteorological parameters, month 

of the year, day of the week and hour in the 

day from the same previous period and 

meteorological paramaters, month of the 

year, day of the week and hour in the day for 

hour for which the prediction is being made.  

For both prediction cases, 5 models are 

developed that differ according to the selected 

previous hours from which the prediction data 

are used. For both cases, optimal prediction 

models are selected.  

Optimal models for both prediction cases 

have high values of 𝑅2 and low values of 

𝑀𝑆𝐸, so it can be concluded that models have 

high prediction accuracy. By using these 

models, it is possible to predict the 

concentration of pollutants for the 24th and 

48th hour ahead with great accuracy. 

The graphical presentation of predicted and 

observed values of the pollutant 

concentrations showed very small deviations 

of predicted from observed values, which 

confirmed the high accuracy of models' 

predictions. 

It can also be concluded that NARX-SP is a 

powerful neural network type that can 

achieve high prediction accuracy for this type 

of data. Analyzing the prediction accuracy of 

the developed models for both prediction 

cases, it can be concluded that the optimal 

models can predict the concentration of 

pollutants for a certain hour ahead with great 

accuracy, but also for all hours ahead up to the 

hour for which the model is intended with the 

correct choice of the referent hour. 

The analysis of the selection of optimal 

models shows that optimal number of 

previous hours from which the data is used, 

must be determined, to achieve satisfactory 

performance and a simpler model structure.
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