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ESTIMATION OF QUALITY INDICATORS 

BASED ON SEQUENTIAL MEASUREMENTS 

ANALYSIS 

 
Abstract: The paper considers the task of evaluating product 

quality indicators based on the results of measurements 

obtained during the control testing. Data processing is 

proposed to be carried out in two stages. First stage comprises 

data compression via cluster analysis, and the second stage 

uses the procedure of non-parametric estimation of the 

observed measurements to evaluate the quality of small 

samples with an unknown distribution law. Quality scores are 

defined as guaranteed scores on a set of distributions with 

moments equal to sample points found from a small sample. A 

number of theoretical statements are formulated, and a model 

example is given. 

Keywords: Quality indicator; Data compression; Cluster 

analysis; Sample; Distribution function; Guaranteed 

estimation; Probabilistic moments. 

 

1. Introduction  
 

The shift of priorities in value to product 

quality has always been the main driver of 

economic development. Currently, 

information and intellectual technologies play 

a significant role in this direction. 

At the same time, the main motion vector for 

improvement and increase of quality is 

traditionally set by theoretical studies, which 

are the foundation for the development of new 

models and methods implemented in 

production technologies in various fields and 

directions of application. An interesting 

approach in this regard is the integration of 

the specifics of information systems with 

general methodological issues of a quality 

management system that measures, controls 

and analyzes the processes necessary to 

achieve the required results, or when 

developing a strategy for integrated 

management systems that combines quality, 

environment and safety management 

(Barbosa et al., 2018), including by 

improving methods of quality management 

on the example of hard quality management 

(Abdullah & Tari, 2017). 

It is the business and commercial practice that 

in most tasks of managing economic aspects 

determine the quality as a degree of consumer 

expectations (Lomakin, 2017).  

Analysis of complex technical-organizational 

system related with the definition of a large 

number of characteristics, which leads to 

complex quality indicators (Mironov et al., 

2017). For distributed information and 

control systems, the concept of quality is 

associated with function targets, see (Buryi, 

2016). 

Methods of obtaining indirect estimates of 

quality indicators of material flows of 

technological processes are of interest 

(Grebenyuk & Itskovich, 2017). 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=24758192300&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603623715&zone=
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While the process of transition “from 

resources to product” aimed at obtaining the 

required guaranteed product quality is taking 

place, the stability of the technological 

processes, typical for production is provided 

by the standardization of technologies and 

compliance with the customer requirements 

(Figure 1). Technology management is 

carried out, on the one hand, based on 

measurements, and, on the other, the required 

processing of the measurement information 

enables the formation of the estimations of 

the quality indicators defining the state of a 

product as a whole. 

 

 
Figure 1. External and internal influences   

on the technological process of obtaining 

the required quality 

 

A number of limitations on the amount of data 

lead researchers to the need to develop 

methods for obtaining the reliable results for 

the evaluation of the observed parameters for 

incomplete data, when receiving a full array 

of observations is either not available or 

economically unprofitable. 

Tests of most products are carried out on pilot 

products batches. Based on the test results, a 

conclusion is given on the conformity or non-

conformity of products to the accepted 

standards. The number of samples for testing 

depends on the required level of quality, as 

well as on the size of the controlled batch of 

products, that to a high extent determine the 

accuracy of the quality assessment task being 

solved, which can be determined by 

international standards organizations.  

International standards are developed by 

international standards organizations. 

International standards are available for 

review and use worldwide. The commonly 

known organization is the International 

Organization for Standardization (ISO). 

We assume sampled low when its volume is 

at least 25-30 observations, although in 

individual studies, for example, in medicine 

to the sample volume requirements are 

always unique (Vasileiou et al., 2018). 

Special criteria for certain distribution laws 

are known for small samples. This way, to test 

the normality hypothesis of a random variable 

distribution law, Shapiro-Wilk's test (Kapur 

& Lambson, 1977) is often used to describe 

the occurrence of failures caused by aging of 

materials, exponential distribution is used to 

specify sudden failures in reliability theory 

(Downton, 1970; Hahn & Shapiro, 1967), etc. 

However, the establishment of the 

distribution law is not always a trivial task, 

and requires additional data or measurements, 

which are also not always available, 

especially at the stage of quality control of a 

new product or equipment. 

It is proposed to divide the solution of the 

problem of reducing the initial set of 

observations into two successive stages. At 

the first stage, the initial data set will be 

structured based on the selected similarity 

measures into clusters containing objects with 

similar quality indicators. The resulting 

sample of the first stage will contain one 

object from each cluster. 

At the final stage, we will consider the formed 

sample of the observed values as small with 

unknown distribution laws, which in the 

proposed approach can be any, and we will 

obtain estimates of the statistical parameters 

of the sample. 

 

2. State of the Research Problem 
 

Cluster analysis is widely used when 

comparing objects on many grounds, when it 

is necessary to classify them, to carry out 

statistical processing in order to identify 

trends, to solve a number of planning and 

forecasting problems. 

Clustering refers to the process of splitting 

(distribution) of the set of observed objects 
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into clusters (subsets) of objects close by the 

selected ratio (similarity measure). 

For the purpose of reducing the excess 

information obtained as a result of 

multivariate study of objects on a variety of 

features in the course of expert evaluation of 

the tests results it is proposed to use the 

methods of cluster analysis (Dalton et al., 

2009; Duran and Odell, 1974). 

A number of approaches are known. In 

particular, it is worth mentioning the 

algorithm of data reduction due to data 

mining based on the mimic algorithm of 

prototype selection from the class of 

evolutionary genetic algorithms (Derrac et 

al., 2010), as well as procedures for 

generating reduced data sets while 

maintaining the required level of 

representativeness using weighted average 

metrics (Kile & Uhlen, 2012). However, it 

should be noted that in practice of cluster 

analysis methods, the choice of the clustering 

criterion, the metrics themselves, the number 

of clusters, if they are not specified in 

advance, are determined by an expert, see e.g. 

(Shirkhorshidi et al., 2015). 

Nonparametric statistical methods actively 

used in solving practical technical and 

economic problems are the basis for the 

evaluation of quality characteristics for small 

samples (Hahn & Shapiro, 1967). 

For nonparametric methods, a priori there are 

no assumptions about the nature of the 

distribution of the studied data, which is 

described in a model application by the 

authors (Hollander et al., 2014). For 

particular problems, the authors Corder and 

Foreman, (2014) used Wilcoxon criterion for 

samples of varying volume to check for 

normality. The most productive area of 

research is the creation of a model toolkit. So 

for regression models in nonparametric 

estimation of observations the degree of 

smoothing polynomial is being selected for 

the purpose of accuracy of a study, see (Efron, 

2014). The model of interval data analysis for 

obtaining guaranteed estimates is obtained in 

the works by (Kieffer et al., 2002). 

The ISO/TR 10017:2003 Standard provides 

practical procedures and recommendations 

for application of statistical methods and 

formation of sample for the required level of 

quality in the evaluation of measured data. 

The procedure for determining the level of 

quality for the studied product batches is 

given in the standard ISO 14560:2007, which 

show that the purpose of controlling the 

product batch is in a provision of a given limit 

level of quality – LQL. The main factors that 

explain the necessity for selective control are 

restrictions on financial resources, since the 

cost of controlled (tested) products 

automatically includes the cost of control 

operations and the cost of production, see the 

series of ISO 2859 standards. 

A small sample is used by researchers in cases 

where organization of a continuous or 

complete control is impossible, which is 

typical for quality control of a number of 

products. It should be remembered that for 

small samples it is assumed that for a sample 

obtained from a normally distributed 

population, the distribution of the sample 

mean also possesses the normality 

characteristics. 

Given this hypothesis, assuming that the 

small sample is also normal, even in 

asymptotic sense, the application of 

distribution quantiles is justified, see 

(Zielinski, 2006). However, most of the 

works are related to the study of the influence 

of sample size on the accuracy of the 

estimation of the observed parameters, e.g. 

see Shore H. (1998), where censored samples 

are used to reduce of errors, which is typical 

for cases of information loss, which also 

indicates ineffectiveness of clarification of 

distribution laws of the observed random 

parameters. A paper by (Dougherty et al., 

2011) provides estimation of the influence of 

the reduction of data volume through 

elimination of classification errors in bio-

information systems, and, for instance, a 

paper by (Yan et al., 2014) covers samples 

with less coordinated data in conditions of 

their noisiness or distortion.  
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It should be noted that the formation of the 

primary sample (measurement data array) can 

have both a probabilistic nature, typical for 

most measurements, and a subjective basis, 

typical for the processes of expert evaluation. 

Table 1 presents the comparative 

characteristics of these two approaches taken 

into account (USEPA, 2002), as well as the 

features of the approaches depending on the 

size of the measurement sample. 

 

Table 1. Probabilistic approach compared to subjective selection  

 Probabilistic approach Subjective selection Sample size 

A
d

v
an

ta
g

es
 

Provides ability to 

calculate uncertainty 

associated with estimates; 

Provides reproducible 

results within uncertainty 

limits; 

Can handle decision error 

criteria 

Can be very efficient 

with knowledge of the 

site; 

Easy to implement 

For complete control:  

confidence in the product 

Sampling of different volumes: 

save on the cost of testing; 

reducing the time of getting results 

D
is

ad
v

an
ta

g
es

 

Random locations may be 

difficult to locate; 

An optimal design depends 

on an accurate conceptual 

model 

Depends upon expert 

knowledge; 

Cannot reliably evaluate 

precision of estimates; 

Depends on personal 

judgment to interpret 

data relative to study 

objectives 

For complete control:  

expensive for the manufacturer; 

applicable for nondestructive testing 

only 

Sampling of different volumes: 

development of control methods for 

small samples are required; 

there is no complete confidence that 

there are no defective products in a 

small sample 

 

Significant limitations on the sample size are 

set by cases related to the control of objects 

on telemetric measurements providing 

functional diagnosis by incomplete data 

(Buryi et al., 1998b). This is implemented via 

semantic compression of information and the 

functional relationships between the 

estimated parameters taken into account, 

semantic content and results of processing of 

measuring information in the evaluation of 

the quality of the studied products. 

For the case where the data do correspond to 

non-normal processes, a number of robust 

methods are developed and a system of 

indicators is proposed to obtain qualitative 

estimates of production capabilities, see 

(Wooluru et al., 2016). 

 

3. Methodology 
 

Since the advent of information and 

measurement data in the sense in which we 

understand it today, there are at least two 

directions in the development of applications: 

one is dictated by the necessity to involve the 

most measurement information available into 

the process of evaluating the observed 

parameters (quality indicators); the other is 

determined by the requirement of the data 

reduction, based on a number of practical 

limitations caused by the capabilities of data 

transmission channels, computing facilities, 

the cost of the experiment and so on. 

 

3.1. General directions to sample 

reduction by data compression methods 

 

Data compression is in some cases an 

important stage in processing a measurement 

sample, both during preprocessing, for 

example, when rejecting anomalous 

measurements, during calibration or when 

censoring a sample, and during the main stage 

of processing, for example, when clustering, 

identification, or obtaining estimates of 

observed parameters. 
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With the development of the methods of 

forming and coding information messages the 

data compression algorithms also change. 

There is a large number of review articles on 

this topic, in particular, see e.g. (Buryi et al., 

1998a; Uthayakumar et al., 2018). The 

variety of compression methods is due to the 

characteristics of data transmission channels 

(wired or wireless, carrier frequency range, 

etc.) from the source to the recipient. As 

applied to quality management systems, we 

will base our analysis on syntactic 

compression, which is implemented via 

structural and statistical redundancy of 

measurement data. 

The structural approach includes coding 

methods and methods of signature analysis 

(Buryi & Lovtsov, 1988), methods of 

measurement compression see e.g. (Yang et 

al., 2013). Structural compression methods 

provide compression with Compression Ratio 

(CR), which is given in equation (1): 

 

𝐶𝑅 = 100 (1 −
No.  of  bits in uncmprd

No.  of bits in  cmprd 
) ,%  (1) 

 

where "cmprd" and "uncmprd" corresponds 

to the abbreviation for the phrase 

"compressed data" and "uncompressed data", 

and is usually CR≈5÷10% of the input data. 

Statistical Compression (SC) methods 

include: 

   adaptive discretization methods; 

   interpolation by polynomial 

dependencies; 

   algorithms based on the functional 

expansion of Kalman filter (resistant 

to information loss, provide reduced 

dimension of the state vector of 

objects and other modifications of 

filters elements); 

   approximation methods based on 

orthogonal functions (discrete 

Chebyshev transform, Walsh-

Hadamard transform, Haar 

transform). 

 

 

At the same time the value of the compression 

ratio is 𝐶𝑅SC ≈ 50…100 for a separate 

parameter, depending on the number of 

elements combined in a cluster. 

 

3.2. Reduction of measurement samples 

based on cluster analysis 
 

The main task of clustering is the formation 

of subsets of objects according to a certain 

cluster feature or property, for which various 

measures (relations) of similarity or 

difference are often used. This approach is 

widely used in the tasks of searching for 

analogs (prototypes) – see (Iglesias & 

Kastner, 2013), pattern recognition – (Duran 

and Odell, 1974), diagnostics – (Buryi et al., 

1998b). 

While performing an expert assessment of the 

quality of complex objects, for example, 

software, the total number of measurements 

can reach several hundred. That is explained 

by the large number of indicators themselves 

and the number of experts involved (an 

average of 8-12 people). In accordance with 

the system of standards ISO / IEC 25000: 

2011, which sets out the requirements and 

assessments of software quality, there is a 

number of integrated quality indicators: 

functional suitability, performance level, 

reliability, etc. 

Given a positive assessment of the 

components of functional suitability (Figure 

2) (completeness, correctness, expediency), 

there is sometimes no need for further 

analysis of sub-characteristics, accumulating 

them in an indicator of a higher hierarchical 

level. 

 

 
Figure 2. Sub-characteristics of functional 

suitability 
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The primary information obtained from the 

results of expert assessment is structured in 

the form of a table “object-feature”, where the 

objects are the analyzed (tested) products, and 

the signs are the marks given by experts in 

accordance with a specific scale. 

Let’s denote the set of tested objects as 

𝑂1, 𝑂2, … , 𝑂ℎ ∈ 𝑶, each of which is described 

by a set of attributes (qualities) 𝑄1, 𝑄2, … 𝑄𝑞 ∈

𝑸, which are estimated by experts, the total 

number of which is determined by the power 

of the set 𝑬 = {1,2, … , 𝑒}. Accordingly, for 

the measurement space L formed by the 

specified sets, i.e. 

𝑳 = 𝑶 × 𝑸 × 𝑬, 

the total measurement is 𝑐𝑎𝑟𝑑(𝑳) = 𝑞 ∙ ℎ ∙ 𝑒. 

Thus, each object is represented as a matrix =

‖𝑙𝑖𝑗‖𝑞×ℎ, where 𝑙𝑖𝑗   is the value of attribute 𝑖 

for the 𝑗 -th object, with (i= 1, 𝑞̅̅ ̅̅̅;  𝑗 = 1, ℎ̅̅ ̅̅̅; 
𝑒 = 1 ), i.e. an increase in the number of 

experts will lead to an increase in the rows of 

the matrix L. On the other hand, the totality of 

the “object – feature” matrices represents a 

certain structure of relations. 

At the same time, in view of the heterogeneity 

of individual signs, one can speak of the 

multidimensional scaling problem (MDS) – 

see also (De Leeuw & Mair, 2009). Usually, 

the measure of similarity between two objects 

𝑎 and 𝑎𝑠, where the index 𝑠 corresponds to 

the image of some standard, with which the 

test sample is compared, is projected in the 

metric space over the distance between these 

objects or their properties (features). The 

distance is represented in absolute scale as a 

pairwise comparison of the properties of the 

object being measured with a standard image. 

In addition, the distance must satisfy metric 

axioms such as identity, symmetry, and 

triangle. Using the example of Euclidean 

space and manifolds of metrics (Choi et al., 

2010), partially presented in Table 2 (for two 

data points 𝑥 and 𝑦 in n-dimentiions space), 

the matrix of objects that are closest in their 

properties to standard objects, i.e. 𝑑𝑖𝑗(𝐿) ≤

∆𝑖𝑗, where 

𝑑𝑖𝑗(𝐿) = (∑(𝑎𝑖𝑗 − 𝑎𝑖𝑗
𝑠 )

2

𝑞

𝑖=1

)

1
2

,    (2) 

where ∆𝑖𝑗 are the requirement levels for each 

property of the corresponding 𝑗-th object. 

Table 2. Definitions of the various measures 
Distances Formalization 

Euclidean 

𝑑𝑒𝑢𝑐(𝑥, 𝑦) = (∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

)

1
2

 

Average 

Distance 
𝑑𝑎𝑑(𝑥, 𝑦) = (

1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

)

1
2

 

Weighted 

Euclidean 𝑑𝑤𝑒(𝑥, 𝑦) = (∑𝑤𝑖(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

)

1
2

 

where 𝑤𝑖 is the weigth given to 

the i-th component 

Manhattan 
𝑑𝑚ℎ(𝑥, 𝑦) =∑(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

 

To determine the object that is closest in its 

properties (features) to the standard sample, 

we use the minimization of a functional called 

stress (De Leeuw & Mair, 2009): 

𝑆(𝐿) =∑𝑤𝑖𝑗(∆𝑖𝑗 − 𝑑𝑖𝑗(𝐿))
2
→ min

𝑖<𝑗

  (3) 

Here, 𝑊 = ‖𝑤𝑖𝑗‖  is a known symmetric non-

negative weight matrix, and the weights are 

selected based on the scaling goals. Usually 

weights are chosen from the physical sense. 

For example, 𝑤𝑖𝑗 = ∆𝑖𝑗
𝛾

 , а 𝛾 < 0, and 𝛾 < 0, 

if for an exact approximation smaller 

distances between objects are preferable and 

𝛾 > 0 otherwise. 

The stress 𝑆(𝐿) acquires the physical 

meaning of the potential energy at 𝛾 = −2 for 

a system of 𝑛 connected points, then the 

equation (3) corresponds to the search for the 

equilibrium state of the system in which the 

potential energy is minimal. 

The choice of clustering algorithm is based on 

factors such as the nature of the application, 

the characteristics of the analyzed objects, the 

expected number and shape of clusters, as 

well as the complexity of the task in 
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comparison with the available computing 

power. The sample reduced by cluster 

analysis be investigated below. 

 

3.3 Probabilistic approach to the 

assessment of small measuring samples 

 

Some cases of quality evaluation for 

technical, economic and other processes 

employ indicators like: (𝜉 ≥ (<)𝜀) , where  𝑃 

– is a probability that a random value 𝜉 is not 

less (less) than a set value 𝜀. Such indicator is 

used to evaluate probability of a fault-free 

operation of systems, probability of company 

profits or project portfolio profitability to be 

not less than the target one or risk to be lower 

than a given level, etc. 

Within probability theory (Gnedenko, 2005) 

it is common to use the following estimate for 

an arbitrary distribution 𝐹(𝑡) with a known 

mathematical expectation m and variance 𝜎2: 

𝑃(|𝜉 − 𝑚| ≥ 𝜀) ≤
𝜎2

𝜀2
 ,          (4) 

where 𝜉 – a random value with an unknown 

law of distribution 𝐹(𝑡) 𝜀 – an arbitrary 

positive value. 

Despite being universal, relationship (4) 

provides rough estimates. Improvements and 

refinements of the estimate (4) a fairly large 

number of papers are devoted. The first paper 

solving the task of finding extreme or 

guaranteed (upper and lower) estimates of the 

probabilities 𝑃(𝜉 ≥ 𝜀) for a known 

expectation and variance is solved is 

considered to be the work (Germeyer et al., 

1966), the important direction of the 

guaranteed estimation, and also its 

comparison with a statistical estimation is 

considered in works of A.B. Kurzhansky and, 

in particular, Kurzhanski & Khapalov, 

(1986). 

The lower and upper of estimates probability 

for approach (1) are equal, respectively: 

𝑃(𝜉 ≥ 𝜀) =
(𝑚−𝜀)2

(𝑚−𝜀)2+𝜎2
; 𝜀 ≤ 𝑚 ,        (5) 

𝑃(𝜉 ≥ 𝜀) = 𝑚𝑖𝑛 {1,  
m

ε
,  

σ2

(m-ε)2+σ2
} .      (6) 

 

However, the results obtained in the paper 

(Germeyer et al., 1966), cannot be 

generalized onto arbitrary number of 

moments of distribution. Such generalization 

of the results onto any number of moments 

was obtained in the paper (Lomakin, 1991). 

Let us define a set of distribution functions 

with given moments 𝑚 = 𝑚1, 𝑚2, … ,𝑚𝑘 in 

the following form: 

𝐹0 = {𝐹(𝑡): ∫ 𝑡𝑖𝑑𝐹(𝑡) = 𝑚𝑖; 𝑖 = 1, 𝑘̅̅ ̅̅̅

∞

−∞

} . (7) 

The following statement may then be 

formulated (Lomakin, 1991). 

Statement 1 The upper (lower) value of an 

integral 

𝐽(𝐹) = ∫ 𝑐(𝑡) 𝑑𝐹(𝑡)                (8)

𝜏+0

0

 

with continuous sub-integral function 𝑐(𝑡) 
having 𝑘 + 1 non-negative derivative and 

𝐹(𝑡) ∈ 𝐹0 is achieved with single step-

function distribution, which has a point  𝜏  
among the points of growth 𝑡1, 𝑡2, … , 𝑡𝑣; with 

uneven 𝑘 the number of growth points v in the 

distribution function 𝐹(𝑡)  is determined with 

a relationship 𝑣 = (𝑘 + 3)/2, which has 𝑡0 =
0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑣 < ∞  with even 𝑘  the 

number of growth points 𝑣 in the distribution 

function 𝐹(𝑡) is determined with a 

relationship 𝑣 =
𝑘

2
+ 1 which has 0 < 𝑡1 <

𝑡2 < ⋯ < 𝑡𝑣 < ∞ numbers 𝑝𝑗 > 0 𝑡𝑗 𝑗 =

1,2, … , 𝑣 , comply with the following 

𝑚𝑖 =∑𝑡𝑗
𝑖

𝑣

𝑗=1

𝑝𝑗;   𝑖 = 0, 𝑘̅̅ ̅̅̅;   𝑝0 = 0.    (9) 

The relationship (9) provided a way to 

directly find upper (lower) (or guaranteed) 

probability estimates for a random variable 

(quality characteristic values, etc.) to be 

higher than a certain given level 𝜀  i.e. the 

value of probability 𝑃(𝑟 ≥ 𝜀). 

Let us consider a case when first two 

moments distribution of a random variable 

𝑚1 𝑚2 are known (and, certainly, 𝑚0 = 1 Let 

us write down the equations for the moments 
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with a condition that the guaranteed 

probability estimate 𝑃(𝑟 ≥ 𝜀)  or  𝐹(𝜀) = 1 −

𝑃(𝑟 ≥ 𝜀) is obtained with step-function 

distribution 𝐹(𝑡) having 𝑣 = 2  growth points. 

This way we have:  

{

   𝑝1 + 𝑝2 = 1,
𝑝1𝑡1 + 𝑝2𝑡2 = 𝑚1

𝑝1𝑡1
2 + 𝑝2𝑡2

2 = 𝑚2,
,               (10) 

a set of three equations with four unknowns. 

It is apparent that  

𝐹𝑥(𝜀) = {

0  𝑤ℎ𝑒𝑛   0 ≤ 𝜀 ≤ 𝑡1,
𝑝1𝑤ℎ𝑒𝑛   𝑡1 ≤ 𝜀 ≤ 𝑡2
1    𝑤ℎ𝑒𝑛        𝜀 ≥ 𝑡2.

, (11) 

The last relationship enables us to drop one 

unknown from the set of equations (10) and 

this way obtain a guaranteed estimate 𝐹𝑥(𝜀) 
Since 𝐹(𝜀) = 𝐹(𝜀 − 0), i.e. the distribution 

function is a left-tail continuous function, the 

upper value of the integral (8) takes the form: 

𝐽(𝐹) = 𝐹(𝜏) ∫ 𝑑𝐹(𝑡),                  (12)

𝜏+0

0

 

given 𝐹(𝑡) ∈ 𝐹0 is obtained with step-

function distribution 𝐹(𝑡), which has a point 

𝜀  among the growth points 𝑡1  𝑡2. The 

relationship (11) demonstrates that the case 

where 𝐹𝑥(𝜀) = 𝑝1  is the most interesting one. 

Then we suppose that 𝑡1 = 𝜀  and solve a set 

of three equations with three unknowns:  

{

   𝑝1 + 𝑝2 = 1,
𝑝1𝜀 + 𝑝2𝑡2 = 𝑚1

𝑝1𝜀1
2 + 𝑝2𝑡2

2 = 𝑚2,
,                  (13) 

from which we derive the following, provided 

a series of plain transformations: 

 

𝐹𝑥(𝜀) =

{
 

 
0                   𝑤ℎ𝑒𝑛   𝜀 = 0,

𝑚2 −𝑚1
2

𝑚2 − 2𝑚1𝜀 + 𝜀
2
  𝑤ℎ𝑒𝑛   0 ≤ 𝜀 ≤ 𝑚1

           1                   𝑤ℎ𝑒𝑛      𝜀 ≥ 𝑚1.

, (14) 

 

𝑃(𝜀) =

{
 

 
1                   𝑤ℎ𝑒𝑛   𝜀 = 0,

(𝑚1 − 𝜀)
2

𝑚2 − 2𝑚1𝜀 + 𝜀
2
  𝑤ℎ𝑒𝑛   0 ≤ 𝜀 ≤ 𝑚1

           0                   𝑤ℎ𝑒𝑛      𝜀 ≥ 𝑚1.

,           (15) 

  

The latter result was first obtained using a 

special method (Germeyer et al., 1966), 

which does not allow further generalizations 

and does not work for three or more moments. 

Let 𝑘 = 3, i.e. three moments are known – 

𝑚1 𝑚2 𝑚3. Following the same judgement 

as with two moments it is not difficult to 

obtain the following result: 

𝑃(𝜀) =

{
 
 
 

 
 
 

1 − 𝑝1      𝑓𝑜𝑟                    𝜀 = 0,

1 − 𝑝1 − 𝑝2   𝑓𝑜𝑟   0 ≤ 𝜀 ≤ 𝑚𝑖𝑛 (
𝑚2

𝑚1

;
𝑚3

𝑚2

; √
𝑚3

𝑚1

)

           0         𝑓𝑜𝑟      𝜀 ≥ 𝑚𝑖𝑛 (
𝑚2

𝑚1

;
𝑚3

𝑚2

; √
𝑚3

𝑚1

) .

,                     (16) 

  

The most cunning case is when 𝑃(𝜀) = 1 −
𝑝1 − 𝑝2. Skipping intermediate calculations, 

 we obtain the final relationship for the 

guaranteed estimate 𝑃(𝜀):  

𝑃(𝜀) =
3𝑚2𝑚1

2𝜀2 − 3𝑚1𝑚2
2𝜀 − 𝑚1

3𝜀3 +𝑚2
3

2𝑚2
2𝜀2 +𝑚3

2 −𝑚1𝑚3 𝜀
2 − 3𝑚2𝑚3𝜀 − 𝑚1𝑚3𝜀

3
 .                     (17)
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For any number of fixed moments of 

distribution 𝑘 > 3 the guaranteed estimates 

may be obtained in the same way as in the 

case when two or three distribution moments 

are known. In practice, finding such estimates 

requires numerical methods (Lomakin, 1991). 

One of the open questions left unanswered 

while using statement 1 is the quantity of 

moments required for finding the estimates of 

quality indicators. 
 

4. Main results 
 

Let 𝜌 = (𝑟1, 𝑟2, … , 𝑟𝑛) ∈ 𝑅
𝑛,   be a sample of 

values of a certain parameter characterizing 

the quality of a certain process, for instance, 

mean time to failure of a system. The 

elements of the sample 𝑟𝑖>0  are independent 

variables with the same distribution from a 

certain unknown distribution 𝐹(𝑡). Let’s 

define a set 𝐹1 as a set of all possible 

distribution functions 𝑐, from which a sample 

𝜌 may be derived, i.e. we define the set of 

distribution functions  𝐹1, as follows:  

𝐹1 = {𝐹(𝑡): 𝐹−1(𝜉𝑖) = 𝑟𝑖}.     (18) 

The notation 𝐹−1(𝜉𝑖) = 𝑟𝑖 should be 

understood as the solution of an equation 

(𝑟𝑖) = 𝜉𝑖, which has 𝜉𝑖  as an implementation 

of evenly distributed random value 𝑟 within a 

range of [0,1] . 

Suppose it is required to obtain the upper and 

the lower estimate (boundary) of a 

distribution function 𝐹(𝑡) for a given 𝑡 =
𝑐𝑜𝑛𝑠𝑡 within a set 𝐹1 or to find guaranteed 

estimates for a distribution function within a 

set 𝐹1, i.e. find such 𝐹𝑥(𝑡) and  𝐹𝑥(𝑡)  that:  

𝐹𝑥(𝑡) = min
𝐹(𝑡)∈𝐹1

𝐹(𝑡);

𝐹𝑥(𝑡) = max
𝐹(𝑡)∈𝐹1

𝐹(𝑡).
           (19) 

Basing on the sample  let us define n sample 

moments of distribution 𝐹(𝑡) in the following 

relationships:  

𝑚𝑖 =
1

𝑛
∑𝑟𝑗

𝑖

𝑛

𝑗=1

.                 (20)   

Let us define a set of distribution functions 𝐹0, 

which have distribution moments equal to 

sample moments obtained based on the 

sample 𝜌 using relationships (20), i.e.:  

𝐹0 = {𝐹(𝑡):∫ 𝑡𝑖 𝑑𝐹(𝑡) = 𝑚𝑖; 𝑖 = 1, 𝑛̅̅ ̅̅̅

∞

0

}. 

Let’s consider a task: within a set 𝐹0 find the 

lower and upper estimate (boundary) for a 

distribution function 𝐹(𝑡)  with a given 𝑡, i.e. 

find such 𝐹𝑥(𝑡) and  𝐹𝑥(𝑡), that:  

𝐹𝑥(𝑡) = min
𝐹(𝑡)∈𝐹0

𝐹(𝑡);

𝐹𝑥(𝑡) = max
𝐹(𝑡)∈𝐹0

𝐹(𝑡).
           (21) 

The following statement may be formulated.  

Statement 2. Tasks defined by relationships 

(19) and (21) are equivalent to each other. 

Proof. In order to prove the statement, it is 

required to demonstrate that the sets of 

distributions 𝐹0 and 𝐹1 are equal to each other. 

The equality of two sets 𝐹0 and 𝐹1 is 

understood as an identical equality, i.e. it 

means that every element of one set belongs 

to the other set and vice versa.  

Let 𝐹1(𝑡) be a certain function such that 

𝐹1(𝑡) ∈ 𝐹1 , i.e. the sample 𝜌 could be 

obtained from the distribution 𝐹1(𝑡). Each 

sample value 𝑟𝑖 ∈ 𝜌 can be considered as a 

solution to the equation (𝑟𝑖) = 𝜉𝑖 , in which 𝜉𝑖 
is the realization of a uniformly distributed 

quantity within the interval [0,1]. Let’s prove 

that 𝐹1(𝑡) ∈  𝐹0 . 

Since 𝑭𝟎 is a set of distribution functions, in 

which the first  𝒏  moments are equal to the 

sample moments determined from the sample 

𝝆 using relationship (20), the statement that 

𝑭𝟏(𝒕) ∈  𝑭𝟎  is then obvious. 

Let’s assume 𝐹0(𝑡) ∈  𝐹0 and 𝐹0(𝑡) to be the 

distribution function for which the first 𝑛 

moments are equal to the sample moments. 

Let’s prove that 𝐹0(𝑡) ∈  𝐹1, i.e. it may be the 

distribution function from which the sample 

𝜌  was obtained. In order to do that, it is 

sufficient to prove that the sample moments 

𝑚 = (𝑚1 𝑚2… ,𝑚𝑛) uniquely determine 

the sample 𝜌. Let’s prove the following 

statement.  
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Statement 3. Let  𝑋∗  = {𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗}   be 

one of the (possibly complex)  solutions of a 

set of equations:  

{
 

 
𝒙𝟏 +  𝒙𝟐 + …+ 𝒙𝒏 = 𝒃𝟏 ;

𝒙𝟏
𝟐 +  𝒙𝟐

𝟐 +⋯+ 𝒙𝒏
𝟐 = 𝒃𝟐;

…  …  …  …  …  …
 𝒙𝟏
𝒏 +  𝒙𝟐

𝒏 +⋯+ 𝒙𝒏
𝒏 = 𝒃𝒏 ,

  (𝟐𝟐) 

then the system of equations (19) does not 

have other solutions except for those obtained 

through a number of rearrangements used to 

impact the set  𝑿∗.  

Proof of Statement 3. Let’s introduce the 

following notation:   

   𝑠𝑘 = 𝑥1
𝑘 +  𝑥2

𝑘 +⋯+ 𝑥𝑛
𝑘 ; 𝑘 = 1,2, … , 𝑛 . 

For any  𝑘  the polynomial   𝑠𝑘  is a symmetric 

polynomial, i.e. such polynomial that does 

not change under any permutation of 

variables and therefore, as stated by the main 

theorem on symmetric polynomials (Okunev, 

1966),  can be uniquely represented as a 

polynomial from elementary symmetric 

functions:  

{

𝝈𝟏 = 𝒙𝟏 +  𝒙𝟐 + …+ 𝒙𝒏 ;
𝝈𝟐=𝒙𝟏𝒙𝟐+  𝒙𝟏𝒙𝟑+ …+𝒙𝒏−𝟏𝒙𝒏;

…    …   …   …   …   …

  𝝈𝒏−𝟏 = 𝒙𝟏𝒙𝟐…𝒙𝒏−𝟏 + 𝒙𝟏 𝒙𝟐…𝒙𝒏−𝟐𝒙𝒏 + …+ 𝒙𝟐𝒙𝟑…𝒙𝒏 ;
𝝈𝒏 = 𝒙𝟏𝒙𝟐…𝒙𝒏  .

 

For power sums of 𝑠𝑘  there exists a unique 

inverse representation expressing elementary 

symmetric polynomials in terms of power 

sums. This representation is given by 

Waring’s second formula (Okunev, 1966): 

𝜎𝑘 =∑
(−1)𝑗1+…+𝑗𝑘+𝑘

1𝑗12𝑗2 …𝑘𝑗𝑘𝑗1! 𝑗2! … 𝑗𝑘!
𝑠1
𝑗1 × … × 𝑠𝑘

𝑗𝑘  ; 𝑘 = 1,2, … , 𝑛 ,

where the summation applies to all sets of 

non-negative integers 𝑗1, 𝑗2, … , 𝑗𝑛 with the 

property: 𝑗1 + 2𝑗2 +⋯+ 𝑛𝑗𝑛 = 𝑘 

Thus, the system of equations (22) is 

equivalent to the following system 

{
 
 

 
 

𝒄𝟏 = 𝒙𝟏 +  𝒙𝟐 + …+ 𝒙𝒏 ;
𝒄𝟐 = 𝒙𝟏𝒙𝟐 +  𝒙𝟏𝒙𝟑 + …+ 𝒙𝒏−𝟏𝒙𝒏;

…    …   …   …   …   …
𝒄𝒏−𝟏 = 𝒙𝟏𝒙𝟐…𝒙𝒏−𝟏 + 𝒙𝟏 𝒙𝟐…𝒙𝒏−𝟐𝒙𝒏 + …+ 𝒙𝟐𝒙𝟑…𝒙𝒏 ;

𝒄𝒏 = 𝒙𝟏𝒙𝟐…𝒙𝒏  .

                       (𝟐𝟑) 

 

where 

𝑐𝑘 =∑
(−1)𝑗1+…+𝑗𝑘+𝑘

1𝑗12𝑗2 …𝑘𝑗𝑘𝑗! 𝑗2! … 𝑗𝑘!
 𝑏1
𝑗1 …  𝑏𝑘

𝑗𝑘;  𝑘 = 1,2, … , 𝑛 .              (24) 

 

Let’s consider the equation:             

𝑥𝑛 + 𝑎1  𝑥
𝑛−1 + …+ 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0,  (25) 

where   𝑎𝑘 = (−1)𝑘𝑐𝑘;  𝑘 = 1,2, … , 𝑛. 

Since the set 𝑋∗ of possible solutions satisfies 

the system of equations (22), and, 

consequently, the system of equations (25), 

then, as it follows from the inverse theorem of 

Viet, all elements of the set 𝑋∗ are the roots 

of the equation (25).  

Let us suppose further that the system of 

equations (23) in addition to the set of roots 

𝑋∗ has a set of roots 𝑋∗ ≠ 𝑋
∗. Since, as 

proved above, all the elements of a set 𝑋∗  are 

the roots of equation (25), we thereby 

conclude that all elements of the set  

𝑋∗
∗ = 𝑋∗ ∪ 𝑋∗ 

are the roots of equation (22), and due to the 

inequality 𝑋∗ ≠ 𝑋
∗ the cardinal number of the 

set 𝑋∗, i.e. 𝑐𝑎𝑟𝑑 𝑋∗ > 𝑛.  

However, this contradicts the main theorem 

of algebra, which states that equation (25) has 

exactly 𝑛 roots.  
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This contradiction proves Statement 3. 

Statement 3 proves that Statement 2 is 

justified. 

Consequently, instead of the original problem 

defined by relationship (19), we can solve the 

problem defined by relationships (21), i.e. we 

could consider the problem of finding the 

upper and lower bounds of the distribution 

function on a set of distributions, in which  𝑛 

moments are equal to  𝑛 sample moments 

found from the relationship (22) for sample 𝜌 

with the volume of 𝑛 dimensions. 

Let’s consider an algorithm for the numerical 

solution of the problem of finding guaranteed 

estimates of the distribution function, defined 

by relationships (21). 

To stay distinct, we will consider the problem 

of finding the upper estimate of the 

distribution function. The upper bound for the 

distribution function 𝐹(𝑡) for a given 𝑡 = 𝜏 in 

accordance with the above result is achieved 

on a discrete distribution. Let 𝑡1, 𝑡2, … , 𝑡𝑣  be 

the growth points of the distribution function; 

𝑝1, 𝑝2, …, 𝑝𝑣 are the values of the growth 

(jump) of the distribution function at the 

corresponding points. Then the task may be 

rewritten in the form: 

𝐹𝑥(τ) =  max
𝑝𝑗

𝐹(τ) =  ∑𝑝𝑗  

𝑑

j=1

 (26) 

under conditions 

∑𝑡𝑖
𝑗
𝑝𝑖 = 𝑚𝑗; 𝑗 =  0, k̅̅̅̅̅ ,   m0 = 1.

𝑣

i=1

 (27) 

The relationship (26) 𝑝𝑑  is the value of  

growth (jump) of the distribution function 

𝐹(𝑡)in the point where t = τ. 

The problem defined by relationships (26) 

and (27) is a nonlinear multidimensional 

programming problem. We solve this 

problem of multidimensional programming 

by the following iterative method. 

Let’s introduce some set of growth points of 

the distribution function 𝑇𝑠 = (𝑡1, 𝑡2, … , 𝑡𝑣𝑠), 
e.g. in the following way: 𝑡𝑔 = 𝛿𝑔 . In the 

latter relation, the index 𝑔 takes values 1, 2, 

..., 𝑣𝑠; 𝛿 – is a constant value – a step of 

discretization. Let 𝜋1, 𝜋2, … , 𝜋𝑣𝑠  be the 

growth (jump) values of the distribution 

function at these points, and for some growth 

points from the set 𝑇𝑠, the growth may be 

zero. 

Let us consider the problem: find the upper 

boundary of the distribution function 

𝐹𝑥(τ) =  max
𝑝𝑗

 𝐹(τ) =  ∑𝑝𝑗  

𝑑

j=1

 (28) 

under conditions 

∑𝑡𝑖
𝑗
𝜋𝑖 = 𝑚𝑗 ; 𝑗 =  0, k̅̅̅̅̅ ,   m0 = 1.

𝑣𝑠

i=1

 (29) 

In relation (28), 𝜋𝑑𝑠 is the growth rate of the 

distribution function at the point 𝑡𝑑𝑠 , 
moreover, 𝑡𝑑𝑠 ≤ 𝜏 ≤ 𝑡𝑑𝑠+1 . The latter 

problem, defined by relations (28) and (29), is 

a linear programming problem and can be 

solved using standard software packages for 

solving linear programming problems. 

Then we reduce the discretization step, for 

example, though half-division and solve the 

linear programming problem each time until 

the difference between the value of the 

distribution function  𝐹𝑥(τ) ≈ 𝐹ℎ
𝑥(𝑡𝑑𝑠 )  in 

the previous and subsequent 𝐹𝑥(τ) ≈
𝐹ℎ+1
𝑥 (𝑡𝑑𝑠 )  steps is material, i.e. until module 

of the difference meets the following 

condition 

|𝐹ℎ+1
𝑥 (𝑡𝑑𝑠 ) − 𝐹ℎ

𝑥(𝑡𝑑𝑠 )| > 𝛾, (30) 

where 𝛾 > 0 is a small value determining the 

precision of estimation of the upper bound of 

a distribution function; ℎ, ℎ + 1 – previous 

and next step in the solution of linear 

programming problems. 

Let’s consider an example of usage of the 

proposed method for determining the upper 

estimate of the distribution function. Let’s 

assume that we have data on a certain process 

represented by four dimensions. Basing on 

this sample of four dimensions, estimations of 

four moments 𝑚1 , 𝑚2, 𝑚3, 𝑚4 have been 

found. The source data for the estimates of the 

moments are presented in table 3. 

 

Table 3. Data on estimates of moments 

𝑚1 𝑚2 𝑚3 𝑚4 

2,85 9,45 34,05 129.45 
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Let us define the set of points of growth for 

the distribution function 𝑇𝑠 = (1,2, … ,5), 
then for 𝛿=1  we will assume 𝑡𝑔 = 𝑔 , and 

𝑔 = 1,5̅̅ ̅̅ . Let 𝜋1, 𝜋2, … , 𝜋5  be the growth 

(jump) of the distribution function at these 

points. 

It is necessary to find the upper estimate of 

the distribution function 𝐹(𝜏)  with 𝜏 = 2. The 

accuracy of the estimate of the distribution 

function is set equal to 𝛾 = 0,01. 

Let us describe the solution of the problem in 

the form of a sequence of steps. 

Step 1. Let’s write down the problem of 

finding the upper estimate (boundary) of the 

distribution function in expanded form: find 

𝐹𝑥(2) = max ( 𝜋1 + 𝜋2) (31) 

under conditions: 

          𝜋1 + 2𝜋2 + 3𝜋3 + 4𝜋4 + 5𝜋5 = 2,85 
  (32) 

      𝜋1 + 4𝜋2 + 9𝜋3 + 16𝜋4 + 25𝜋5 = 9,45   (33) 

   𝜋1 + 8𝜋2 + 27𝜋3 + 64𝜋4 + 125𝜋5 = 34,05   (34) 

  𝜋1 + 16𝜋2 + 81𝜋3 + 256𝜋4 + 625𝜋5 = 129,45   (35) 

 

As a result of solving this linear programming 

problem we obtain 𝐹𝑥(2) = 0,30. 
Step 2. The expanded form of the task of 

finding the upper estimate of the distribution 

function is not given here due to its 

«bulkiness»; it is determined by relationships 

similar to (14) – (18). 

We reduce the discretization step 𝛿 = 0,5. 

The set of points of growth of the distribution 

function 𝑇𝑠 = (0,5;  1;  1,5; … ; 4,5;  5). 

As a result of the repeat solution of the linear 

programming problem with the changed 

initial data, the estimat is obtained 𝐹𝑥(2) =
0,475. 

Step 3. We  reduce the discretization  step  to 

𝛿 = 0,25 on the interval [1,5] and obtain, 

respectively the set of growth points of the 

distribution function 𝑇𝑠 = (0,25; 0,5; … ; 5). 

As a result of the solution of the linear 

programming problem the estimate is 

obtained   𝐹𝑥(2) = 0,514. 

Step 4. We  reduce the discretization  step  to 

𝛿 = 0,125 on the interval [1,5] and obtain, 

respectively the set of growth points of the 

distribution function 𝑇𝑠 = (0,125; 0,25;… 

… ;4,75; 5) . As a result of the solution of the 

linear programming problem the estimate is 

obtained   𝐹𝑥(2) = 0,528. 

Step 5. We reduce the discretization step 𝛿 =
0,0625 on the interval [1,5] and obtain, 

respectively the set of growth points of the 

distribution function 𝑇𝑠 = (0,0625; 0,125;… 

… ;49375; 5) . As a result of the solution of 

the linear programming problem the estimate 

is obtained   𝐹𝑥(2) = 0,534. 

For this step we find 𝛾 = 0,006. With this the 

solution of the task is complete. In order to 

obtain a more precise estimate a smaller 

discretization step may be used. 

 

5. Conclusion 

 

A comprehensive two-step data mining 

approach for product quality control is 

proposed. It is shown that at the first stage of 

processing the measurement information, by 

applying cluster analysis methods and 

attracting well-known proximity measures, 

the amount of data can be reduced to the level 

when it may be identified as a small sample 

in the accepted terminology. To determine the 

quality indicators, a method for determining 

guaranteed estimates on a set of distributions 

with given moments equal to sample 

moments is proposed. It is shown that in order 

to obtain a guaranteed assessment of the 

quality indicator in a case of small samples, a 

number of distribution points should be used 

equal to the sample size. It is also proposed to 

use an algorithm for determining quality 

indicators in the context of incomplete 

information, which is based on the numerical 

solution of a sequence of linear programming 

problems. The algorithm was practically 

tested for finding the upper estimate of the 

distribution function at four known points. 
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The upper estimate of the distribution 

function is found with the required accuracy 

in the numerical solution of a sequence of 

linear programming problems until a given 

level of accuracy of quality estimates is 

achieved. 
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