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ROBUST ALTERNATIVES TO THE 

TUKEY'S CONTROL CHART FOR THE 

MONITORING OF THE STATISTICAL 

PROCESS MEAN 

 
Abstract:Control Charts are one of the most powerful tools 

used to detect aberrant behavior in industrial processes. A 

valid performance measure for a control chart is the average 

run length (ARL); which is the expected number of runs to get 

an out of control signal. At the same time, robust estimators 

are of vital importance in order to estimate population 

parameters. Median absolute deviation (MAD) and quantiles 

are such estimators for population standard deviation. In this 

study, alternative control charts to the Tukey control chart 

based on the robust estimators are proposed. To monitor the 

control chart’s performance, the ARL values are compare for 

many symmetric and skewed distributions. The simulation 

results show that the in-control ARL values of proposed 

control charts are higher than Tukey’s control chart in all 

cases and more efficient to detect the process mean. However, 

the out- of- control ARL values for the all control charts are 

worse when the probability distribution is non-normal. As a 

result, it is recommended to use control chart based on the 

estimator Qn for the process monitoring performance when 

data are from normal or non-normal distribution. An 

application example using real-life data is provided to 

illustrate the proposed control charts, which also supported 

the results of the simulation study to some extent. 

Keywords:Average run length (ARL), Box plot, Robust 

estimator, Statistical process control, Tukey's control chart 

 

 

1. Introduction 
 

Statistical process control (SPC) charts are 

widely used for monitoring, measuring, 

controlling and improving the quality of 

production in many areas of application, 

such as, in industry and manufacturing, 

finance and economics, epidemiology and 

health care, environmental sciences and 

other fields (Sukparungsee, 2013). The 

Shewhart control chart, used for monitoring 

industrial processes is the most popular tool 

in SPC, developed under the assumption that 

the observations from a process are 

independent, identically distributed and from 

a normal distribution (Sindhumol et al., 

2016). On the other hand, the Tukey’s 

control chart (TCC) proposed first by Alemi 

(2004), based on the principles of the box 

plot and has no assumptions about data with 

unknown distribution so the TCC can be 

used with all probability distributions. The 

TCC is also applied to small data and it is 

robust to data with outliers. Furthermore, it 

is easy and simple to setup control limits 

because the TCC does not use the standard 
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deviation or the mean to construct the 

control chart limits, but uses only quartiles 

(Mekparyup et al., 2014). The problem with 

the TCC is that it assigns the same weight 

for both upper and lower control limits, 

which is acceptable for symmetrical 

distributions but becomes a problem with 

asymmetric distribution (Tercero-Gomez et 

al. 2012). 

Alemi (2004) presented the Tukey’s control 

chart (TCC) which applied the principle of 

box plot to obtain the control limits. 

Borckardt et al. (2005) suggested that TCC 

does not perform well in the presence of 

serial dependence. However, for independent 

measurement, TCC performed well even for 

small samples of 12 observations. Torng and 

Lee (2008) compared the performance of the 

TCC with Shewhart’s control chart for both 

symmetric and asymmetric distributions and 

concluded that TCC is not sensitive to shift 

detection when the process violates the 

normality assumption. Lee (2011) extended 

the TCC with asymmetrical control limits so 

called ACL-Tukey’s control chart to detect a 

change in parameter of skew population. 

Tercero-Gomez et al., 2012) proposed a 

modified version of the TCC to consider 

skewness with minimum assumptions on the 

underlying distribution of observations. 

Sukparungsee (2012) studied the 

performance of TCC for detecting a change 

in parameter when observations are from 

skewed distributions such as exponential and 

Laplace. Also, the performance of TCC 

compared with Shewhart and Exponentially 

Weighted Moving Average (EWMA) charts. 

Sukparungsee (2013) determined the 

robustness of asymmetric TCC for skew and 

symmetric distributions such as Lognormal 

and Laplace distributions. 

Khaliq et al. (2015) compared TCC with 

individual / moving range (XmR) control 

charts and found that TCC was more 

efficient than XmR in the sense of average 

run length, extra quadratic loss, median run 

length, standard deviation run length, 

performance comparison index, and relative 

average run length. Mekparyup et al. (2014) 

proposed the Adjusted Tukey’s Control 

Chart (ATCC) as an improvement of the 

TCC by substitution median of absolute 

deviation from the sample median (MAD) 

instead of the interquartile range (IQR). 

They concluded that the ATCC is more 

efficient to detect the process when it is in 

control. 

It is noted that the modification of TCC 

based on the robust estimators, namely 

MAD, sample quantile (Sn) and sample 

quantile (Qn) are limited in literature. 

Therefore, in this paper, a modification of 

the TCC based on these robust estimators is 

presented as an alternative procedure with 

independent and identically distributed 

observations. These modified control charts 

are named as MAD-TCC, Sn-TCC and Qn-

TCC. 

The rest of paper is organized as follows: 

Section 2 discusses the robust estimators of 

IQR and defined Tukey’s control charts. In 

addition to, the ARL and design of TCC are 

explained in Section 2. The design and the 

ARL for the proposed modified-TCCs are 

given in section 3. In Section 4, a Monte-

Carlo simulation study is conducted to 

evaluate the performance of the proposed 

modified methods. In Section 5, an 

application example based on real life 

dataset is presented to illustrate the 

implementation of the proposed modified-

TCCs. Finally, Section 6 concludes and 

summarizes the findings and outcomes of the 

paper. 

 

2. Robust estimators and control 

charts 
 

A robust estimator is an estimator which 

performs well in presence of outliers and 

when data are not drawn from a normal 

distribution. There are many robust 

estimators used for location and scale in 

literature, see for example, Rousseeuw and 

Croux (1993), Tiku and Akkaya (2004), 

Akyüz and Gamgam (2017), and Akyüz et 

al. (2017). In this study, we give the 
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definition, properties and information about 

three robust estimators of scale parameter. 

They are the MAD and the two robust 

measures of scale proposed by Rousseeuw 

and Croux (1993) as alternatives to MAD, 

the first estimator is Sn and the second 

estimator is Qn. The three robust estimators 

are used in this paper to construct the 

proposed modified-TCCs. 

 

2.1. The average run length (ARL) 

calculation 

 

The average run length (ARL) is the 

expected number of points plotted on the 

control chart until an out of signal indicated 

and it is used to evaluate the process 

behavior. If xiis an observation,  P 

represents the probability of an out-of-

control process with shift size,
1 0

 







, where 
0

  is initial process mean,  is 

population standard deviation and 

1 0
    , then  P  can be 

calculated as follows: 

 

1 0

0

( ) 1 ( )

1 ( )

1 ( ) .
U C L

L C L

P P L C L x U C L

P L C L x U C L

f x d x
 

 

     

     





      

      

  

 

In this case, ( )A R L   is obtained as 

follows: 

1
( )

( )

A R L
P




  

The  P  will give the probability of Type 

I error (α) or the probability of the 

occurrence of false alarm. The larger in-

control average run length (ARL0) value 

shows that the probability of occurrence of 

false alarm is small. In the in-control 

process, the smaller α the larger ARL0 value 

(Davis, 2004). In contrast, if the process is 

out of control or mean shift occurs (δ≠ 0), 

then P(δ≠ 0) will  give the power, (1−β ) 

corresponding with type II error probability 

(β) and the out-of-control average run length 

(ARL1) is used to monitor the out-of-control 

process. The small ARL1 value illustrates 

that the power of detecting the process shift. 

In the out-of-control process, the smaller the 

value of β the smaller the value of ARL1. 

There is no regulation for what value of 

( )A R L  should be either the process is in 

control or out of control. For the Shewhart’s 

control chart for individual observations, 

ARL0 = 143.338 for 3-sigma control limits 

with ( 0 ) 0 .0 0 2 7 .P    Wheeler and 

Chambers (1992) suggested that ARL0 = 92 

could be accepted when the process is in 

control. 

 

2.2. The Tukey's Control Chart (TCC) 

 

Tukey’s control chart (TCC) is simple and 

easy to use. It has an effective charting 

structure that exhibits robustness for the 

skewed distribution. The TCC was first 

proposed by Alemi (2004) who applies the 

principles of box plot. The lower control 

limit (LCL) and the upper control limit 

(UCL) for this control chart are constructed 

as follows: 

1

3

L C L Q k IQ R

U C L Q k IQ R

 

 

 

 

where Q1 = F-1(0.25), Q3 = F-1(0.75) and IQR 

= Q3– Q1. Under the normal distribution with 

population mean μ and population standard 

deviation σ, the parameter k is usually set as 

k = 1.5 (Ryan, 2000). 

 

2.3. The ARL Calculation for the 

Tukey's Control Chart 

 

When the control limits of the TCC have 

been set, the in-control and out-of-control 

average run lengths can be calculated. 

Assuming that the process is in control, then 

the ARL0 for the TCC can be calculated as 

follows: 
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

1
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If the process is out of control or the mean 

shift of   occurs, then the ARL1 for the 

TCC can be calculated as follows: 



















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1
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1

IQRkF

IQRkF

dxxf
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where α is the probability of Type I error, β 

is the probability of Type II error, f(x) is the 

probability density function (pdf) and F(x) is 

its cumulative distribution function (CDF) of 

the random variable X. 

 

3. The proposed modified Tukey’s 

control charts 

 
In this section, we will introduce the design 

and the ARL for the three modified-TCCs 

methods based on the three robust measures 

of scale as an alternative to the TCC. The 

proposed modified control charts are 

computationally simple, easy to use and 

therefore analytically a more desirable 

method. These methods are known as MAD-

TCC, Sn-TCC and Qn-TCC. 

 

3.1. The MAD-TCC control chart 

 

The first method we propose in this paper is 

called the MAD-TCC control chart, which is 

a modification of the TCC and based on the 

MAD. The MAD was first introduced by 

Hampel (1974) who attributed it to Gauss, as 

a robust scale estimator alternative to the 

sample standard deviation (S). It is often 

used as an initial value for the computation 

of more efficient robust estimators. The 

MAD is widely used in various applications 

as an alternative to sample standard 

deviation (S). Abu-Shawiesh (2008), for 

example, used the MAD for constructing a 

simple robust dispersion control chart. For a 

random sample X1, X2, …,Xn with a sample 

median (MD), the MAD is defined as 

follows: 

 1 .4 8 2 6 ; 1, 2 , 3, ... ,
i

M A D M D X M D i n  

The constant, 1.4826 in (6) adjusts the scale 

for maximum efficiency when the data 

comes from a normal distribution. The MAD 

has the highest breakdown point possible 

which is 50% and this value is twice as much 

as the IQR. Furthermore, the influence 

function of MAD is bounded but not smooth. 

The efficiency of MAD compare to IQR is 

37% at normal distribution. The control 

limits of MAD-TCC are obtained as follows: 

1

3

L C L Q k M A D

U C L Q k M A D

 

 
 

Under the normal distribution with 

population mean μ and population standard 

deviation σ, the IQR equals 1.34898 σ and 

the MAD equals 0.67449 σ so the MAD is 

twice as much as IQR, then the parameter k 

is set as k = 3 in order to equal the control 

limits of the TCC. 

When the control limits of MAD-TCC have 

been set, the ARL0 and ARL1 can be 

calculated. Assuming that the process is in 

control, then the ARL0 and ARL1 for the 

MAD-TCC are obtained respectively as 

follows: 



1

)(1

1

)75.0(

)25.0(

0 1

1

















MADkF

MADkF

dxxf

ARL  

and 

 

1

1

1 ( 0 .7 5 ) ( )

( 0 .2 5 ) ( )

1 1

1

1 ( )

F k M A D

F k M A D

A R L

f x d x

 

 






 

 

 


 

 

 

3.2. The Sn-TCC control chart 

 

The second method we propose is called the 

Sn-TCC control chart, which is a 

modification of the TCC. This method is 

based on the Sn estimator, which is proposed 

by Rousseeuw and Croux (1993). The Sn 

estimator is a powerful alternative to the 
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MAD. For a random sample X1, X2,…,Xn 

the Sn estimator is defined as follows: 

 1 .1 9 2 6 ; , 1, 2 , 3, ... ,
n i j i j

S M D M D X X i j n    

 

For each iwe compute the median of

 ; 1, 2 , ...,
i j

X X j n  . This yields n 

numbers, the median of which multiplied by 

the factor 1.1926 gives our final estimate Sn. 

The Sn has the highest breakdown possible 

points which is 50% and the influence 

function of it is also bounded. The efficiency 

of the Sn estimator compare to the IQRis 

58.23% for normal distribution which is 

better than that of MAD. The control limits 

of Sn-TCC are obtained as follows: 

1

3

n

n

L C L Q k S

U C L Q k S

 

 
 

 

Under the normal distribution with 

population mean μ and population standard 

deviation σ, the IQR equals 1.34898 σ and Sn 

equals 0.83850 σ so the Sn is 1.6 as much as 

IQR, then the parameter k is set as k = 2.4 in 

order to equal the control limits of the TCC. 

When the control limits of Sn-TCC have 

been set, the ARL0 and ARL1 can be 

calculated. Assuming that the process is in 

control, the ARL0 and ARL1 for the Sn-TCC 

are obtained respectively as follows: 


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and 
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3.3. The Qn-TCC control chart 

 
The third method we propose in this paper is 

called the Qn-TCC control chart, which is a 

modification of the TCC. This method is 

based on the Qn estimator, which is 

proposed by Rousseeuw and Croux (1993). 

The Qn estimator is simple, easy to compute 

and does not need any location estimator. It 

is also a powerful alternative to the MAD. 

For a random sample X1,X2,…,Xn the Qn 

estimator is defined as follows: 

  ( )
2 .2 2 1 9 ; ; , 1, 2 , 3, ... ,

n i j g
Q X X i j i j n   

 

where 
( 1)

2 2

h h h
g

  
  
 

, 1
2

n
h

 
 
 
 

 

and 
2

n 

 
 

is the integer part of the fraction
2

n

Here the symbol (.) represents the 

combination. The Qnestimator is 2.2219 

times the g-thorder statistic of the
2

n 
 
 

 

distances between data points and the factor 

1.1926 is for consistency. The Qnestimator 

has the highest breakdown possible points 

which is 50% and the influence function of it 

is smooth, bounded and has no discrete part. 

The efficiency of the Qn estimator compare 

to IQR is 82% at normal distribution which 

is better than that of MAD and Sn estimators. 

It is found that for a small sample sizes, the 

Sn estimator performs better than the Qn 

estimator (Rousseeuw and Croux, 1993). 

The lower and upper control limits of the 

Qn-TCC are obtained as follows: 

1

3

n

n

L C L Q k Q

U C L Q k Q

 

 
 

 

Under the normal distribution with 

population mean μ and population standard 

deviation σ, the IQR equals 1.34898 σ and 

Qn equals 0.45062 σ so the Qn is 3 as much 

as IQR, then the parameter k is set as k = 4.5 

in order to equal the control limits of the 

TCC. 

When the control limits of Qn-TCC have 

been set, the ARL0 and ARL1 can be 

calculated. Assuming that the process is in 
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control, the ARL0 and ARL1 for the Qn-

TCC are obtained respectively as follows: 



1

)(1

1

)75.0(

)25.0(

0 1
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Table 1, lists the value of the parameter k 

under the normal distribution for all 

proposed modified-TCCs methods in this 

paper. 

 

Table 1.The values of the parameter k 
Control Chart k 

TCC 1.5 

MAD-TCC 3 

Sn-TCC 2.4 

Qn-TCC 4.5 

 

4. Performance analysis 
 

In this section, we carry out performance 

analysis of the proposed modified methods 

and the competing TCC. There are different 

measures based on run length (RL) that are 

used to evaluate the performance of control 

charts. The most common measure of these 

is the average run length (ARL). In this 

study, the ARL measure will be used as a 

criterion in evaluating the performance of all 

considered control charts followed by 

comparative analysis. 

 

 

4.1. The performance of modified- TCCs 

and effects of outliers 

 

To evaluate the performance of the proposed 

modified methods and the TCC, we 

conductedaMonte-Carlo simulation study to 

estimate ARL0 and ARL1. We assume that 

the in-control process follows a normal 

distribution with population mean,  , and 

population variance
2

 , and the out-of-

control process is normally distributed with 

population mean,  , and population 

variance
2

  where  refers to the amount of 

shift. We vary sample sizes n = 10, 20, 30, 

50 and n = 100. The amount of shift (  ) 

values is assumed as

 0 .5, 1 .0 , 1 .5 , 2 .0 , 2 .5 , 3 .0 . The statistical 

software MATLAB R2016a was used in the 

data analysis. The Monte-Carlo simulation 

results gives an average of 300.000 

simulated run lengths. The Newton-Raphson 

method was used to determine the values of 

k. 

Table 2 summaries the simulations results 

for TCC. According to the results; every 118 

samples will expect a false alarm for n = 10 

and k=1.5, that is, ( 0 ) 1 1 7 .7 7 2 3A R L    . 

This means that until the 118 samples are 

taken, the process is still under control. If 

0 .5  , the process variation will be 

detected after sampling 54 times, that is, 

( 0 .5 ) 5 4 .2 5 4 8A R L    . If only 10 

observations are obtained for some reason, 

the value is about 82% of the theoretical 

value. 

Tables 3-5 show ARLs values of MAD-TCC 

for various sample sizes. 

 

Table 2. ARLs values of Tukey's control chart (TCC) for various sample sizes 

Sample 

Size (n) 
Shift ( ) 

0 0.5 1.0 1.5 2.0 2.5 3.0 

10 117.7723 54.2548 18.6112 7.7808 3.7205 2.2007 1.5657 

20 120.4980 63.5718 21.1055 8.2182 4.0016 2.2986 1.6025 

30 126.8320 66.2819 20.4156 8.3490 4.0161 2.3199 1.5997 

50 138.2633 67.2616 21.7122 8.4745 4.0367 2.3110 1.6110 

100 144.1205 68.0924 22.3167 8.5035 4.1172 2.3438 1.6125 
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Table 3. ARLs values of MAD-TCC for various sample sizes 

Sample Size 

(n) 
Shift ( ) 

0 0.5 1.0 1.5 2.0 2.5 3.0 

10 119.5074 61.5596 20.3545 8.1800 3.8475 2.2730 1.5979 

20 126.8424 66.7574 21.7084 8.4969 4.0888 2.3558 1.6242 

30 135.8967 69.5906 21.2512 8.5963 4.1176 2.3557 1.6149 

50 142.4278 68.7830 22.3068 8.6286 4.1041 2.3318 1.6212 

100 142.4475 68.3872 22.5721 8.5598 4.1479 2.3538 1.6152 
 

Table 4. ARLs values of Sn-TCC for various sample sizes 

Sample Size 

(n) 
Shift ( ) 

0 0.5 1.0 1.5 2.0 2.5 3.0 

10 64.1884 32.5730 12.3883 5.4431 2.8740 1.8418 1.3892 

20 89.9623 46.6643 16.2633 6.7298 3.4379 2.0814 1.4907 

30 101.3785 53.4901 17.4659 7.2814 3.6337 2.1600 1.5245 

50 118.4101 58.2513 19.3304 7.7786 3.7764 2.2125 1.5594 

100 126.9907 62.0208 20.7892 8.0780 3.9470 2.2775 1.5818 
 

Table 5. ARLs values of Qn-TCC for various sample sizes 

Sample Size 

(n) 
Shift ( ) 

0 0.5 1.0 1.5 2.0 2.5 3.0 

10 141.7237 66.4338 22.0997 8.5691 4.0850 2.3382 1.6219 

20 141.9912 68.2538 21.8990 8.5191 4.1244 2.3612 1.6229 

30 142.3076 67.7821 21.3017 8.5779 4.1099 2.3558 1.6178 

50 142.8497 68.5882 22.1042 8.6571 4.1063 2.3383 1.6183 

100 143.0513 68.3275 22.5187 8.5957 4.1456 2.3621 1.6194 
 

On the other hand, when the observation 

value is 30, the ( 0 )A R L   value becomes 

88.5% of its theoretical value. 

From Table 3, it can be deduced that the 

performance of MAD-TCC is more efficient 

than that for the TCC. On average, every 120 

samples will expect a false alarm for n = 10 

and k=3, that is, ( 0 ) 1 1 9 .5 0 7 4A R L   

If the process mean shifts to 0 .5  , then 

the process variation will be identified after 

sampling 62 times, for example, 

( 0 .5 ) 6 1 .5 5 9 6A R L    . When the 

observation value is 30, the ( 0 )A R L  

value becomes 95% of its theoretical value. 

Thus, for a better performance of the MAD-

TCC, it may be recommended that at least 30 

observations should be collected. 

From Table 4, it can be concluded that the 

performance of Sn-TCC is less efficient than 

the TCC and MAD-TCC. If  n = 10 and k = 

2.4are selected, in average one will expect a 

false alarm in every 64 times of sampling, 

that is, ( 0 ) 6 4 .1 8 8 4A R L    . If the 

process mean shifts to 0 .5  , then the 

process variation will be detected after 

sampling 33  

times, that is, ( 0 .5 ) 3 2 .5 7 3 0A R L   

When the number of observations increases 

to 100, the ( 0 )A R L   value becomes 89% 

of its theoretical value, that is, we need more 

than 100 observations. 

As seen in Table 5, Qn-TCC is more efficient 

than TCC, MAD-TCC and Sn-TCC, the

( 0 ) 1 4 1 .7 2 3 7A R L    for n = 10 and k 

= 4.5. This illustrates that the process is still 

in control through 142 samples are drawn. 

Thus, we can suggest that at least 10 

observations should be collected, if one 

expects a better performance from Qn-TCC. 

Therefore, the Qn Tukey's control chart (Qn-

TCC) is the best one among the four methods 

considered in this study. 
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In Table 6, we consider 100 observations 

including one outlier (4.7198) to see the 

effect of outlier on the propsed control 

charts. The mean and standard deviation of 

these 100 observations are 0.0254 and 

0.94396, respectively.  

We define the outlier by a multiple of the 

standard deviation from mean. The ARL 

values for all charts are presented in Table 7. 

In comparison the values of ARL in Table 7 

with the values in Tables 2-5, it is easily seen 

that the ARL values for all considered 

methods in this study are very close and the 

performance of the modified-TCCs was not 

significantly affected by the an outlier value. 

 

Table 6. The simulated observations including an outlier 
0.5845 -0.3338 1.6470 -2.3649 0.4557 0.5049 -1.2036 0.8380 -1.3949 -1.1676 

0.4048 -0.0522 -0.3085 0.7709 0.3745 0.2313 -0.0203 0.1264 -0.1522 -1.1676 

0.0254 0.6836 0.2931 -1.3363 -1.2002 -0.3090 -0.3024 -0.7600 1.2369 -0.6596 

-0.6518 0.2076 0.1172 -0.6530 -1.4289 -0.1111 -1.1891 0.6093 -0.0735 1.0924 

-0.3165 0.2048 2.1862 -0.6970 0.7834 1.4233 1.6389 0.3906 0.3396 0.2167 

-1.6342 -1.9518 1.4545 2.0922 -0.0307 -0.5869 0.2466 1.1835 0.6617 -0.1922 

-1.1149 -1.0058 -1.3140 -0.6667 0.2847 1.5557 0.1800 -1.7435 0.4577 1.3295 

0.7864 0.1887 1.6068 1.1374 0.5274 -0.6592 -0.0351 0.0102 0.3445 0.5089 

-0.4693 0.0196 0.3070 1.6963 1.6514 1.4499 -0.8026 0.4402 1.0632 0.6232 

1.1516 -0.1727 -0.6873 -0.0110 0.8203 -0.3850 -0.7876 -0.5618 -1.3261 4.7198 

 

Table 7. Effect of outlier value on the ARL values  

Control Chart 
Shift ( ) 

0 0.5 1.0 1.5 2.0 2.5 3.0 

TCC 155.5771 75.3560 24.2966 9.2745 4.3983 2.4582 1.6631 

MAD-TCC 158.3895 76.1870 24.5102 9.3548 4.4276 2.4725 1.6684 

Sn-TCC 145.4152 70.2645 22.9234 8.8988 4.2495 2.4139 1.6404 

Qn-TCC 168.6374 80.1944 25.5155 9.6944 4.5375 2.5322 1.6922 

 

4.1. The performance of modified- TCCs 

and effects of outliers 

 

In this section, we examine the effect of 

skewness and kurtosis on the ARL values for 

all control charts. In this regard, following 

Stoumbos and Reynolds (2000), Calzada and 

Scariano (2001), Lin and Chou (2007), Abu-

Shawiesh (2008), and Torng and Lee (2008) 

the data are generated from different 

symmetric and skewed probability 

distributions. The Newton–Raphson method 

was used to determine k values. 

We select four Student-t distributions of with 

degrees of freedom, 3 0 , 2 0 ,1 0 , 4v  , 

Logistics distribution with a = 0 and b= 1, 

Laplace distribution with a = 0 and  b = 1 

and Gamma distribution with b = 1, a = 4, 

1to examine the ARL values of TCC and the 

modified-TCCs. For comparing the 

performance of detecting mean shift between 

the TCC and modified-TCCs, the ARL0, was 

adjusted to 143.34 and the parameter kwas 

chosen corresponding to the ARL0. The ARL 

values are tabulated in Tables 8 - 11 for 

TCC, MAD-TCC, Sn-TCC and Qn-TCC 

respectively. 

From Tables (8-11), it was indicated that the 

performance of detecting the process of the 

TCC and modified-TCCs, was worse when 

the distribution was away from a normal 

distribution. Obviously, this is especially 

true for cases of t (4), Laplace (0, 1) and 

Gamma (1,1). 
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Table 8.The ARL values of Tukey’s control chart (TCC) for nonnormal distributions 

Distribution 
 Shift ( ) 

k 0 0.5 1.0 1.5 2.0 2.5 3.0 

t (4) 2.956 143.32 123.98 83.54 46.86 23.03 10.34 4.55 

t (10) 1.924 143.32 96.01 41.51 16.74 7.18 3.51 2.04 

t (20) 1.680 143.32 82.36 30.46 11.78 5.26 2.80 1.78 

t (30) 1.623 143.32 77.62 27.42 10.58 4.82 2.63 1.72 

Logistic (0,1) 2.074 143.26 99.89 46.29 19.71 8.58 4.06 2.24 

Laplace (0,1) 3.082 143.26 113.65 65.77 33.86 16.88 8.34 4.12 

Gamma (1,1) 4.124 143.54 128.56 88.67 36.86 18.96 9.04 6.83 

Gamma (4,1) 2.604 143.32 70.56 25.79 12.86 6.78 3.36 1.86 

 

Table 9. The ARL values of MAD-TCC for nonnormal distributions 

Distribution 
 Shift ( ) 

k 0 0.5 1.0 1.5 2.0 2.5 3.0 

t (4) 4.559 143.32 123.98 83.54 46.86 23.03 10.34 4.55 

t (10) 3.578 143.32 96.01 41.51 16.74 7.18 3.51 2.04 

t (20) 3.278 143.32 82.36 30.46 11.78 5.26 2.80 1.78 

t (30) 3.177 143.32 77.62 27.42 10.58 4.82 2.63 1.72 

Logistic (0,1) 3.720 143.26 99.89 46.29 19.71 8.58 4.06 2.24 

Laplace (0,1) 4.480 143.26 113.65 65.77 33.86 16.88 8.34 4.12 

Gamma (1,1) 5.120 143.54 128.56 88.67 36.86 18.96 9.04 6.83 

Gamma (4,1) 4.012 143.32 70.56 25.79 12.86 6.78 3.36 1.86 

 

Table 10. The ARL values of Sn-TCC for nonnormal distributions 

Distribution 
 Shift ( ) 

k 0 0.5 1.0 1.5 2.0 2.5 3.0 

t (4) 3.842 127.86 108.69 68.76 38.76 20.16 9.94 4.11 

t (10) 2.856 127.86 82.69 39.45 14.69 6.63 3.37 1.98 

t (20) 2.624 127.86 76.89 28.64 10.89 5.04 2.54 1.09 

t (30) 2.563 127.86 65.73 25.36 9.56 3.97 1.81 1.00 

Logistic (0,1) 2.564 127.64 86.45 40.25 18.11 7.56 3.67 1.79 

Laplace (0,1) 3.964 127.64 110.01 58.93 30.17 14.93 7.64 3.58 

Gamma (1,1) 4.563 127.96 100.16 80.89 34.79 17.56 8.93 5.12 

Gamma (4,1) 3.664 127.86 65.26 23.86 10.98 5.56 2.99 1.79 

 

Table 11. The ARL values of Qn-TCC for nonnormal distributions 

Distribution 
 Shift ( ) 

k 0 0.5 1.0 1.5 2.0 2.5 3.0 

t (4) 5.964 143.35 123.98 83.56 46.85 23.03 10.34 4.56 

t (10) 5.642 143.35 96.01 41.51 16.74 7.18 3.51 2.04 

t (20) 4.869 143.35 82.36 30.46 11.78 5.26 2.80 1.78 

t (30) 4.674 143.35 77.62 27.42 10.58 4.82 2.63 1.72 

Logistic (0,1) 4.701 143.26 99.89 46.29 19.71 8.58 4.06 2.24 

Laplace (0,1) 5.967 143.26 113.65 65.77 33.86 16.88 8.34 4.12 

Gamma (1,1) 6.862 143.54 128.56 88.67 36.86 18.96 9.04 6.83 

Gamma (4,1) 5.014 143.32 70.56 25.79 12.86 6.78 3.36 1.86 

 



 

650              M. O. A. AbuShawiesh, H. E. Akyüz, H. S. A. Migdadi, B. M. G. Kibria 

5. An application example 
 

In this section we provide an application of 

the proposed methodology using a real 

dataset from Tercero-Gomez, et al., 2012). 

The data points represent the time between 

arrivals, was observed at the Texas Tech 

University (TTU) library. A brief description 

of the dataset is given here. The data was 

manually measured by one of the authors of 

the paper. At that time authors were 

interested in simulation modeling where data 

collection presents an issue as assignable 

causes might contaminate the samples, hence 

biasing the analysis.  

The authors find that the control charts may 

be helpful for detecting the changes and 

therefore the proposed chart could be used as 

a way to spot truly atypical behaviors and 

helps to determine if the data was suitable 

for modeling. By avoiding mistakes such as 

(i) including too large times between 

arrivals, or (ii) mislabeling behaviors 

as atypical when they were actually typical, 

was helpful to determine demand levels for 

authors models. A batch of extremely large 

time between arrivals might also indicate the 

end of the rush hour, a period beyond the 

scope of some of author’s simulation 

models. 100 observations was collected. The 

data points are presented in Table 12. 

 

Table 12 The sample of collected time between arrivals at TTU library 

15.18 7.82 3.60 24.32 6.30 61.94 17.55 10.32 7.12 20.00 

6.64 46.18 11.13 9.46 4.20 12.78 14.63 41.44 17.10 13.38 

4.84 17.10 44.28 53.89 13.41 27.60 12.60 6.88 16.35 8.49 

5.34 6.25 19.79 8.51 5.08 13.81 11.22 10.47 62.56 4.11 

19.95 3.07 14.1 41.16 3.11 7.75 3.48 18.82 18.17 3.79 

4.71 40.28 6.99 4.29 7.14 28.68 26.33 10.14 48.08 12.72 

7.44 14.26 16.75 50.29 12.65 37.37 3.32 21.70 18.25 4.17 

17.22 3.59 17.03 9.52 18.06 4.25 8.55 10.49 2.90 4.91 

9.52 41.14 8.61 5.61 7.47 24.63 4.43 19.56 13.94 6.18 

9.84 5.02 3.80 9.50 18.25 8.87 12.04 11.32 4.24 3.84 

Anderson-Darling statistic of 7.260 was 

calculated to test normal distribution of the 

data set with P-value < 0.005. As can be 

observed, Anderson-Darling test's P-value 

and normal probability plot showed that the 

data is not normally distributed. 

Additionally, the histogram shows a skewed 

distribution. 

Also the Box Plot shows several outliers on 

the right tail. According to Tercero-Gomez 

et al. (2012), the data comes from 

exponentially distributed population. Using 

the 100 observations, the calculated values 

of scale robust estimators, the control limits 

values and the number of observations out of 

the control limits for both the TCC and the 

modified-TCCs are given in Table 13 and 

Table 14, respectively. 

 

Table 13. Values of scale estimators  
Robust Scale Estimator Value 

IQR MAD Sn Qn 

11.995 8.947 7.931 8.065 

 

Table 14.The control charts comparison 

Control Chart LCL UCL n 

TCC 0 36.203 12 

MAD-TCC 0 45.052 6 

Sn-TCC 0 37.244 12 

Qn-TCC 0 54.505 2 
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A summary with descriptive statistics from 

the data was obtained using Minitab® 

Release 14 (Minitab Inc., 2012) and the 

results are shown in Figure 1. 

It was decided to set the LCL for the TCC 

and the modified-TCCs equal to 0 since it is 

impossible to have a negative time between 

arrivals. Figure 2 shows a control chart 

showing the sampled data and the control 

limits for both the TCC and the modified-

TCCs.Comparing the control limits as shown 

in Figure 2, it can be seen that, according 

toTCC, there are 12 observations out of the 

control limits. According to MAD-TCC, 

there are 6 observations out of the control 

limits. According to Sn-TCC, there are 12 

observations out of the control limits and 

only 2 observations out of the control limits 

according to the Qn-TCC control chart, so 

the modified-TCCs was more efficient and 

have more capacious than the TCC. 
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Figure 1.Descriptive statistics of the time between arrivals at a TTU library 

 

6. Conclusion 
 

This paper proposed some modified control 

limits of the Tukey Control Chart based on 

the robust estimators for IQR in order to 

reduce probability of type I error. The TCC 

method as well as the proposed modified 

methods use only information from the first 

three quartiles (Q1, median, Q3), the MAD, 

the Sn and the Qn estimators to set up the 

control limits. A simulation study has been 

conducted to compare the performance of 

the control charts. Many symmetric and 

skewed distributions were selected to 

examine the performance of the proposed 

methods by comparing the ARL values. It is 



 

652              M. O. A. AbuShawiesh, H. E. Akyüz, H. S. A. Migdadi, B. M. G. Kibria 

found that the Qn-TCC has the best process 

monitoring performance followed by the 

MAD-TCC. 
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Figure 2. The TCC and modified-TCCs of the time between arrivals at a TTU library 

 

The Sn-TCC has approximately the same 

process monitoring performance as the TCC. 

We also found that the ARL1 performance, 

for both the TCC and the modified Tukey's 

control charts, are worse when the 

probability distribution is non-normal. 

Furthermore, it is observed that from the 

ARL0 values, the performance of the 

modified Tukey's control charts has more 

capacious than the TCC with various 

numbers of observations. When the three 

proposed methods are compared with each 

other, we notice that the Qn-TCC produces 

the smaller ARL1 and the sensitivity of it to 

detect a shift in the process when the shift 

occur is more than that for MAD-TCC and 

Sn-TCC. Both Sn-TCC and TCC produces 

approximately the same ARL1. Furthermore, 

in the presence of outliers, the performance 

of TCC and the modified Tukey's control 

charts do not differ significantly. The 

proposed modified Tukey's control charts 

shows more robust behavior and detects the 

shifts more efficiently. The results of the 

numerical example supported the results of 

the simulation study to some extent. The 

superior detection ability depends on the 

magnitude of departure from normality. 

Finally, we hoped that the proposed 

modified Tukey's control charts, especially 

Qn-TCC and MAD-TCC, will serve as an 

attractive alternative to the Tukey's control 

chart (TCC) by quality control operators.  
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