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A MODEL FOR DESIGNING A BLOOD 

SUPPLY CHAIN NETWORK TO 

EARTHQUAKE DISASTERS  

(CASE STUDY: TEHRAN CITY) 

 
Abstract: One of the most devastating events is earthquake. 

Along with planning for supply and the proper distribution of 

relief goods including food and cloths, one of the most vital 

issues is to relieve to injured people who are in need of blood. 

In this research, we design a blood supply chain when the 

earthquake takes place, should the need arises by people 

requesting the blood units. Based on this need, a multi-level 

multi-objective mathematical model is designed during 

several periods based on minimizing the cost of the blood 

supply chain network and maximizing the reliability of the 

selectable paths for blood transportation. This model 

determines the optimal number and locations for establishing 

the facilities as well as determining the allocation of blood to 

various facilities, and, on the other hand, optimal routes for 

blood transportation among facilities. The mathematical 

model presented is validated by data acquired from 

implemented model of Tehran city.  

Keywords: Earthquake, Blood supply chain, Multi-level 

multi-objective mathematical model, Reliability 

 

 

1. Introduction 

 

Healthy blood is a life savior. One person of 

various ages and races on the planet needs to 

blood transfusion to survive per second. 

Recent events indicate the effect of disorders 

and disasters to blood supplying services 

(Fahiminia et al., 2015). For example, 

Japan's 2011 earthquake disturbed supplying 

the blood in Tokyo since all donated blood 

was not transfused to injured people. Also, 

the Sichuan's earthquake taken place in 

2008, created a quality disordering in 

China's blood management system since not 

considering the lab in various cases and 

lacking the proper management of 

transportation caused that healthy blood was 

not sufficiently provided to injured people. 

In the tsunami of 2004 due to the influx of 

donors, the problems created concerning the 

blood excess and loss. Inadequate blood 

supply chain design in the Bam city's 

earthquake of 2003 caused in a waste of 

about 77% of donated blood. Thus, from 

108,000 blood units donated, only 21,000 

units, approximately 23% have been released 

to earthquake strikers (Aghyani et al., 2015).  

In such a situation, needing the crisis 

management plan is felt. Crisis management 

refers to a set of specific operations and 

processes that are used and planned to 

prevent and reduce the effects before the 

crisis, during and after that (Jabbarzade et 

al., 2014). Logistics plays a crucial and 

deterministic role in the supply chain and 

crisis management support since the entire 

crisis management process is disrupted if the 

role does not act correctly. Relief logistics 
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relates to processes and systems coordinating 

the people, resources, skills, and required 

knowledge to help injured people in natural 

disasters (Liang et al., 2012). 

The crisis in the field of blood transportation 

services generally refers to a situation where 

the ability of the chain to receive and supply 

blood is temporarily or completely lost, or a 

circumstance that causes suddenly an over-

request for blood, and a large influx of 

donors to blood donation locations, which 

causes problems in the blood collection 

system. Therefore, managing blood system 

during a crisis is one of the main challenges 

in the field of blood transportation services. 

The occurrence of natural disasters such as 

earthquakes can make a bad effect on blood 

donators, staffing, blood transportation, 

procurement and facilities, and generally 

blood supply chain (Zendeh Del et al., 

2014). 

For this reason, at the time of the earthquake 

crisis, the issue of the design of the blood 

supply chain should be taken into account in 

accordance with the real world needs and 

circumstances. The BSCN includes blood 

donors, temporary and permanent blood 

facilities, and blood establishments seeking 

the location and determination of the number 

of permanent and temporary facilities, 

hospitality Facilities, total blood donated at 

each facility and the amount of blood 

inventory at the end of each period. After the 

occurrence of a destructive earthquake, 

selection and transportation of blood 

collected from high reliability routes is of 

very important. On the other hand, according 

to the previous research, taking into 

consideration of laboratory levels in the 

blood supply chain is of very important 

(Nahafti et al., 2016). Because in the 

aftermath of the earthquake, we are faced 

with a sharp rise in blood demand from the 

injured. The aim of the study is supply and 

distribution of blood in a timely manner, 

such that to minimize costs and maximize 

the reliability of the selected path. In this 

regard, this study presents a mathematical 

model for blood supply and distribution in 

different crisis periods. Hence, in this 

research, we design a unified network of 

blood supply and distribution for post-crisis 

situations and for reducing the damage 

caused by lacking the blood. Thus, providing 

a dual mathematical model, we seek to 

minimize network costs and increase the 

reliability of the selected pathways for blood 

transportation. In this research, a two-

objective mathematical model is presented 

for designing a blood supply chain network. 

The first objective is to minimize the costs of 

the entire supply chain, and the second one is 

to maximize the reliability of the selected 

pathways for blood transportation.  

 

2. Literature review 
 

Designing an effective and efficient blood 

supply-chain network calls for the adoption 

of several decisions, including strategic or 

long-term decisions, operational or short-

term ones. These decisions are the location 

of blood collection centers, transferring the 

collected blood from blood collection centers 

to blood centers, as well as from blood 

centers to hospitals. Additionally, the 

inventory level in each period in blood 

centers is one of the major decisions in 

designing a Blood Supply-Chain Network 

(BSCN). As blood demand is different in 

various periods after an earthquake (e.g., in 

the first 24 hours of the earthquake, demand 

is much higher), for this reason, dynamic 

network design should be used in designing 

a BSCN (Jabbarzadeh et al., 2014). In one of 

the first studies in the field of supply chain 

design regarding the location and inventory 

together, Deskin et al. (2002) proposed a 

mathematical model for network design 

considering location and two types of 

inventory costs, including variable and fixed 

costs. They proposed a nonlinear mixed 

integer model for the problem and used a 

Lagrange liberation method to solve it 

(Deskin et al., 2002). In the problems of 

designing dynamic network, the location and 

capacity of facilities can vary in different 

periods. This shows the importance of using 
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a dynamic network design in designing 

BSCN, because, using dynamic network 

design to provide dynamic demand at 

various rates in each period is very 

important. The first study on locating 

dynamic facilities was done by Ballou 

(1968). 

Although, dynamic facility location has 

many advantages compared to the static 

facility location where the facilities’ location 

is constant during the planning period, but, 

few studies have been conducted concerning 

designing supply chain network using a 

dynamic network design. Hinojosa et al. 

(2000) studied the location of dynamic 

facilities for minimizing total network costs. 

They proposed a mixed integer programming 

(MIP) model for the problem where the 

capacity of the suppliers had been 

considered as well. Melo et al. (2006) have 

provided a mathematical framework for the 

dynamic location problem that considers 

many assumptions of dynamic network 

design. They considered the inventory 

decisions besides the capacity constraints for 

facilities in the dynamic design of the 

network. In more recent studies, Correia et 

al. (2013) provided a mathematical model 

for designing a supply chain network in two 

levels and multi-product to maximize the 

profitability of the whole supply chain 

network by identifying the optimum location 

of facilities. Oar and Piraskav (1979) 

proposed a mathematical model taking into 

account the location and allocation for 

designing supply chain network. They 

assumed that demand for the blood needed 

by hospitals would be possible by assigning 

them to the nearest blood banks.  

In more recent studies, a mathematical 

model has been examined considering 

location to allocation in multi-cycle mode 

for designing a supply chain network 

(Dohamel et al., 2016). Yadavalli and 

Balcou (2016) presented an inventory model 

for perishable commodities such as blood 

and identified the optimal order level for 

each product. Hosseinifard and Abbasi 

studied the effect of sustainability and 

centralization on the blood supply chain. In a 

case study, they showed that centralization is 

one of the best factors in designing a supply 

chain network. They found that reducing the 

number of hospitals that keep blood supply 

could have a great effect on preventing 

shortages in emergencies. Osorio et al. 

(2018) presented a simulation-optimization 

model for planning production in the supply 

chain of blood. They showed that the 

mathematical model provided by them could 

significantly stop deficiency. Dillon et al. 

(2017) presented a random two-stage 

mathematical model to design a BSCN and 

inventory management. In a case study, they 

showed that the proposed mathematical 

model can greatly affect the cost 

minimization and maximization of service 

levels. Cheraghi et al. (2016) provided a 

fuzzy-random MPI model for designing a 

BSCN. Their innovation in the mathematical 

model presented was that they considered 

the main parameters of the mathematical 

model as uncertain. 

After a strong earthquake in Turkey in 1999, 

Şahin et al. (2007) presented several 

location-allocation models for local blood 

bank location. They implemented the 

proposed models in various case studies and 

showed their effectiveness. Sha and Huang 

(2012) developed a mathematical multi-

period locating-allocation model for 

designing a BSCN in emergencies. To solve 

the proposed mathematical model, they used 

Lagrange liberation method. Nagurney et al. 

(2012) presented a network optimization 

model for designing a BSCN. They 

considered different levels in BSCN, such as 

blood collection centers, storage facilities 

and distribution hubs. Jabbarzadeh et al. 

(2014) presented a robust optimization math 

model for designing a BSCN in an 

earthquake. In a case study in Tehran, they 

showed the effectiveness and efficiency of 

their mathematical model where the goal of 

designing a BSCN with the cost of 3 levels 

of blood donors, blood collection centers, 

and blood centers was to minimize the total 

cost of the supply chain. In order to expand 
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the proposed mathematical model, they 

presented a two-way randomized 

mathematical model for designing supply 

network. Besides the cost function, they 

considered the minimization function of the 

entire transportation time as well. To solve 

the proposed mathematical model, they used 

Epsilon constraint and Lagrange liberation 

methods (Jabbarzadeh et al., 2014) 

(Fahimnia et al., 2015). Arvan et al. (2015) 

presented a mathematical model for 

designing a BSCN that included multiple 

levels such as donors, collection centers, 

laboratories, and blood centers. The purpose 

in the mathematical model presented by 

them was to determine the location of blood 

centers and to allocate other facilities to this 

location. This was done so that the costs of 

the entire supply chain network besides the 

delivery time are minimized and the main 

challenges in optimizing and designing the 

supply chain network and the management 

of the parameters of the mathematical model 

and the real world conditions are presented 

as in some cases these parameters are 

unpredictable. Considering the uncertainty in 

the main parameters of the mathematical 

model, a mathematical optimization model 

was presented. 

In recent studies and papers, Kohneh et al. 

(2016) presented a two-way model for 

designing a BSCN. The goal of the 

mathematical model provided by them was 

to minimize the cost of the supply chain and 

to maximize the coverage of donors. They 

showed the efficiency of the proposed 

mathematical model in a case study. In one 

of the most recent papers, Zahiri and 

Pishvaee (2017) presented a two-objective 

mathematical model to minimize the costs of 

the entire supply chain and minimize unmet 

demand. Table 1 is provided to compare the 

mathematical models presented in previous 

papers and the mathematical model 

presented in this paper. 

 

Table 1: Comparison of the innovation of this study and the papers in the literature review 

Study 

Objective function T
h
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sitiv
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C
o

st 

D
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ce 

R
isk

 

S
afety

 

R
eliab

ility
 

Şahin (2007) No yes No No No 3 No yes No 

Nagurney et al. (2012) yes No yes No No 7 No No No 

Sha and Huang (2012) yes No No No No 2 yes No No 

Jabbarzadeh (2014) yes No No No No 3 yes yes No 

Arvan (2015) yes No No No yes 4 No No No 

Fahimnia (2015) yes No No No yes 4 yes No No 

Nahofti Kohneh et al. (2016) yes No No No No 5 yes yes No 

Zahiri and Pishvaee (2017) yes No No No No 5 yes yes No 

Our study yes No No No yes 4 yes yes yes 

 

As the mathematical model presented in this 

study is a two-objective mathematical 

model, using multi-purpose optimization 

solutions is significant in obtaining Pareto's 

answers. This is because Pareto's answers 

(including a set of Pareto's answers) allow 

decision makers to select one of the different 

Pareto's answers (which, regarding priorities 
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is like the priorities and the significance of 

the higher-objective functions). As is seen in 

Table (1), various papers with different 

mathematical models have been presented 

for designing supply chain networks in an 

earthquake. Most of cited papers in table 1, 

have presented an optimization model for 

designing a BSCN based on model presented 

in Jabbarzadeh et al. (2014). In this regard, 

Fahimnia et al. (2015) considered the time of 

blood supply in critical situations in their 

model. They added another function in the 

BSCN for minimizing transportation time to 

the mathematical model. Nahofti Kohneh et 

al. (2016) showed that in the real world, two 

other levels, laboratories and hospitals, 

should also be considered in BSCN, because, 

laboratories are responsible for blood testing, 

and there is a demand for blood in hospitals, 

and, hospitals should be considered in 

designing BSCN. In their mathematical 

model, they added labs and hospitals to the 

mathematical model and tested the efficiency 

of their mathematical model in a case study 

in Tehran. Zahiri and Pishvaee (2017) 

considered a realistic assumption in their 

study. In their mathematical model, they 

assumed that different blood groups could 

donate blood to each other. 

This research has tried to present a 

comprehensive mathematical model for 

designing BSCN in the earthquake, based on 

the mathematical model presented by 

Jabarzadeh et al. (2014) in order to cover 

two research gaps; 1- Previous researches 

have been just considered the cost objective 

function in their model, whereas, in crisis 

situations, the transfer of blood collected 

between facilities could be considered as 

well. While, routing and determining the 

optimal transportation routes are very 

important in the real world. 2- Reliability is 

one of the important factors in designing 

supply chain networks in the aftermath of a 

crisis that, has not been considered in any of 

the previous papers. According to previous 

studies, considering the level of labs in blood 

supply chain is very important (Nahofti 

Kohneh et al., 2016). In this study, a dual 

mathematical model will be presented for 

designing BSCN. The first goal is to 

minimize the costs of the entire supply chain 

and the second is to maximize the reliability 

of the selected routes for blood transfusion 

as after a destructive earthquake, the 

selection and transfer of blood collected 

from high reliability routes is very important.  

it has been tried to use different resolution 

methods to provide decision makers with 

various Pareto's answers to be able to select 

the best answer according to their priorities 

and the importance of each of the objective 

functions. 

 

3. Proposed mathematical model  
 

As mentioned earlier, the mathematical 

model presented by Jabbarzadeh et al. (2014) 

considered only the cost objective function 

in their mathematical model. Considering 

that they have provided their mathematical 

model for crises, considering spending in 

such circumstances is far from the real world 

(Fahimnia et al. 2015). This is because goals 

such as minimizing time and maximizing 

reliability can be regarded as another 

important goals for decision makers. On the 

other hand, in the mathematical model 

provided by them, there is no level 

associated with the labs, whereas 

considering the level of labs can lead to a 

more comprehensive model. Additionally, in 

their proposed model, there has been no 

focus on the distribution of blood collected 

by blood collection centers to laboratories 

and blood centers. However, in real world, 

decisions such as transportation and routing 

are important decisions that decision-makers 

face. According to the above, this study has 

tried to consider the others factors and 

provide a comprehensive mathematical 

model for designing BSCN. In doing so, a 

second objective function is added to the 

example, whose purpose is to maximize the 

reliability of transport routes. As the 

proposed model is a mathematical model for 

designing a BSCN after an earthquake, 

increasing reliability can be critical. On the 
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other hand, a new level called lab is 

considered in the mathematical model, so 

that the blood collected by blood collection 

centers is first sent to labs and then sent to 

blood centers. Among the other innovations 

in the mathematical model presented in this 

study, one can mention the decisions related 

to the transportation of the blood collected to 

labs and its distribution to blood centers. In 

the mathematical model presented in this 

study, ambulances to laboratories and from 

laboratories to blood centers distribute blood 

collected in a blood collection center. Figure 

1 shows a graphical profile of the network 

considered in the study. 

 
Figure 1. Graphical presentation of the proposed BSCN 

 

According to the above figure, it is clear that 

the mathematical model presented in this 

study takes more realistic assumptions 

compared to the basic mathematical model. 

In the BSCN in question, blood donors are 

assigned to blood collection centers. Blood 

collection centers are located at 

predetermined potential points and it is 

known at each potential location that a type 

of blood collection center (fixed or mobile) 

is constructed. After assigning blood donors 

to the blood collection centers, the blood 

collected is transferred to labs by the 

ambulances with specified capacity. Blood 

sent to laboratories is then sent to blood 

centers by ambulances of a specified 

capacity. The mathematical model presented 

in this study tries to answer the following 

questions: “Where is the location of fixed 

and mobile blood collection centers? How 

many blood donation centers are needed? 

How many ambulances are needed to send 

blood from blood collection centers to 

laboratories? How is the blood send from 

labs to blood centers and ambulance routes? 

What is the level of blood counts in each 

period in each blood center? Sets, parameters 

and decision variables are used to provide a 

proposed mathematical model in this study 

(Table 2, 3). 
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Table 2. The parameters of the proposed model (Parameter / index) 

𝑖 Blood donors 

𝑗 Potential centers for establishing blood collection centers 

𝑘 Blood centers 

𝑡 Different periods 

𝑢 Labs 

𝑓𝑗  The fixed cost of building a fixed blood collection center in place j 

𝑣𝑗𝑙𝑡 
The cost of transferring temporary blood collection centers (such as blood collection 

buses) from city l to j in period t 

𝑜𝑖𝑗𝑡 
The operational cost of blood collection from blood donors in the J blood collection 

center in Period t 

ℎ𝑘 The cost of maintaining each blood unit at the blood center k 

𝑑𝑘𝑡 The demand of the blood center k in period t 

𝑟𝑖𝑗 Distance of donors i from blood collection center j 

𝑅 The coverage scope of blood collection centers 

𝑏𝑗𝑡 Capacity of blood collection centers j in period t (Temporary centers) 

𝑐𝑗𝑡 Capacity of blood collection centers j in period t (constant centers) 

𝑚𝑖 Maximum blood supply by donors i 

𝑐1𝑗𝑢 
The cost of purchasing and sending each ambulance from the blood collection center j to 

the lab u 

𝑐2𝑢𝑘 The cost of sending any ambulance from lab u to the blood center k 

𝑐3𝑘𝑘ˊ The cost of sending any ambulance from the blood center k to the blood center k' 

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒 ˊ The reliability of paths between blood centers as well as blood centers and laboratories 

cap Capacity of each ambulance 

maxcap𝑘 Maximum capacity of blood centers to maintain blood 

𝐶𝑎𝑢𝑡 Maximum capacity of laboratories to test blood in each period 

M A large number 

Table 3. The decision variables of the proposed model 

𝑋 𝑗́  Binary variable: 1 if the junction center is founded j, otherwise zero 

𝑦𝑖𝑗𝑡 
Binary variable: 1 if donors i are assigned to the collection center j in t period t; otherwise, 

zero 

𝑍𝑗𝑙𝑡  
Binary variable: 1 if the intermediate blood center of the city l in the period t-1 goes to the 

city j at the period t, otherwise zero 

𝑄𝑖𝑗𝑡 The blood donated by the donor i in the blood collection center j in period t 

𝐼𝑘𝑡 The blood in the blood center k at the time t 

𝑓𝑢𝑘𝑡 Binary variable: I if the blood center k is assigned to the lab u at t period t; otherwise zero 

𝑥𝑒𝑒 ˊ𝑢𝑡 
Binary variable: I if the ambulance of center e' visited after center e in period t as the path to 

the lab u; otherwise, zero 

𝑛𝑗𝑢𝑡 The blood transmitted from the blood collection center j to the lab u at period t 

𝑣𝑣𝑗𝑢𝑡 
The number of vehicles needed to send blood collected from the blood collection center j to 

the lab u in period t 

𝑚𝑢𝑘𝑡 The blood transmitted from laboratory u to the blood center k in the period t 

𝑤𝑘𝑡 
Some variables to observe the ambulance capacity constraints and to prevent sub-treatment; 

this variable shows the blood in the ambulance after referral to the blood center K 

𝑟𝑒𝑙𝑖𝑒𝑒 ˊ𝑢𝑡 
The reliability of the route specified between laboratories and blood centers as well as blood 

centers with each other 
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3.1. Objective functions 

 

In this study, the cost and reliability 

objective functions are considered. First, we 

will consider calculating the cost objective 

function, formulated as follows: 

1)  𝑀𝑖𝑛 𝑍1

= ∑ 𝑓𝑗𝑋𝑗

𝑗

+ ∑ ∑ ∑ 𝑐1𝑗𝑢𝑣𝑣𝑗𝑢𝑡

𝑡𝑢𝑗

+ ∑ ∑ ∑ 𝑥0𝑒ˊ𝑢𝑡𝑐2𝑢𝑘 + 𝑥𝑒0𝑢𝑡𝑐2𝑢𝑘

𝑡𝑢𝑘

+ ∑ ∑ ∑ 𝑐3𝑘𝑘ˊ𝑥𝑘𝑘ˊ𝑢𝑡

𝑡𝑢𝑗

+ ∑ ∑ ∑ 𝑜𝑖𝑗𝑡 . 𝑄𝑖𝑗𝑡

𝑡𝑗𝑖

+ + ∑ ∑ ∑ 𝑣𝑗𝑙𝑡 . 𝑍𝑗𝑙𝑡

𝑡

+ ∑ ∑ ℎ𝑘𝐼𝑘𝑡

𝑘𝑡𝑙𝑗

 

(1) 

The above objective function (Number 1) is 

as the sum of the total cost of the blood 

supply network. Thus, the cost of building 

blood collection centers, the cost of 

transporting blood from blood collection 

centers to the labs, transportation costs for 

the transfer of blood from laboratories to 

blood centers, the operational costs blood 

collection from blood donors, transportation 

costs of mobile blood collection centers such 

as blood collection buses, maintenance costs 

associated with blood supply to blood 

centers and deficits in the objective function 

are considered. 

The second objective function considered in 

this study is an objective function for 

maximizing the reliability of blood 

transfusion routes by ambulances from labs 

to blood centers as shown below: 

(2) 2)  𝑀𝑎𝑥 𝑍2

= ∏ ∏ ∏ ∏ 𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

𝑡𝑢𝑒ˊ𝑒

 

Where we have: 

(3) 𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

= 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡 

In other words, 𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡  is the reliability of 

the routes used by the model to transfer 

blood by ambulances from laboratories to 

blood centers. 

Constraints: 

We will present all the constraints used in 

this study. 

(4) 𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

≤ 1 

(5) ∑ 𝑍𝑗𝑙𝑡

𝑙

≤ ∑ 𝑍𝑗𝑙𝑡−1

𝑙

 

(6) 𝑦𝑖𝑗𝑡 ≤ 𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

 

(7) ∑ 𝑟𝑖𝑗𝑦𝑖𝑗𝑡

𝑗

≤ 𝑅 

(8) 𝑄𝑖𝑗𝑡 ≤ 𝑀. 𝑦𝑖𝑗𝑡  

(9) ∑ ∑ 𝑄𝑖𝑗𝑡

𝑡

≤ 𝑚𝑖

𝑗

 

(10) ∑ 𝑄𝑖𝑗𝑡

𝑖

≤ 𝑐𝑗𝑡𝑋𝑗 + 𝑏𝑗𝑡 ∑ 𝑍𝑗𝑙𝑡

𝑙

 

(11) 𝑣𝑣𝑗𝑢𝑡 ≥
𝑛𝑗𝑢𝑡

𝑐𝑎𝑝
 

(12) ∑ 𝑛𝑗𝑢𝑡

𝑢

= ∑ 𝑄𝑖𝑗𝑡

𝑖

 

(13) ∑ 𝑛𝑗𝑢𝑡

𝑗

= ∑ 𝑚𝑘𝑡 . 𝑓𝑘𝑢𝑡

𝑘

 

(14) ∑ 𝑓𝑘𝑢𝑡

𝑢

= 1 

(15) ∑ 𝑥0𝑘𝑗𝑡

𝑘

= ∑ 𝑥𝑘0𝑢𝑡

𝑘

 

(16) ∑ 𝑥𝑒𝑘𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡 

(17) ∑ 𝑥𝑘𝑒𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡 
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(18) 

𝑤𝑘𝑡 − 𝑤𝑘ˊ𝑡 + 𝑐𝑎𝑝 ∑ 𝑥𝑘𝑘ˊ𝑢𝑡

𝑢

≤ 𝑐𝑎𝑝
− 𝑚𝑘𝑡 

(19) 𝑚𝑘𝑡 ≤ 𝑤𝑘𝑡 ≤ 𝑐𝑎𝑝 

(20) 𝐼𝑘𝑡−1 + 𝑚𝑘𝑡 − 𝐼𝑘𝑡 = 𝑑𝑘𝑡 

(21) 𝐼𝑘𝑡 ≤ maxcap𝑘 

(22) ∑ 𝑛𝑗𝑢𝑡

𝑛

𝑗

≤ 𝐶𝑎𝑢𝑡 

(23) 𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≥ (1 − 𝑥𝑒𝑒ˊ𝑢𝑡) 

(24) 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

≤ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡

+ (1 − 𝑥𝑒𝑒ˊ𝑢𝑡) 

(25) 
𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

≥ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡  

Constraint (25) is a constraint related to the 

construction of fixed and mobile blood 

transfusion centers, ensuring that at any 

potential location j, only one of two types of 

fixed and mobile blood collection center 

should be established. 

𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

≤ 1     (26) 

Equation (27) constraints show and 

determine the movement of moving blood 

centers between potential locations in each 

period, as formulated below. 

(27) ∑ Zjlt

l

≤ ∑ Zjlt−1

l

    

Constraint (28) is related to how blood 

donors donate to blood collection centers. 

This constraint shows that blood donors can 

only be allocated to a blood collection center 

where at least one fixed or mobile blood 

collection center is located. 

𝑦𝑖𝑗𝑡 ≤ 𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

  (28) 

Constraint (29) shows the scope of coverage 

of blood collection centers. It ensures that 

the blood donator is assigned to a blood 

collection center and the distance from that 

to the center should be less than the scope of 

coverage of the blood collection center. 

𝑟𝑖𝑗𝑦𝑖𝑗𝑡 ≤ 𝑅  (29) 

Constraint (30) shows that blood donors can 

donate blood at a blood collection center 

assigned to a blood collection center. 

𝑄𝑖𝑗𝑡 ≤ 𝑀. 𝑦𝑖𝑗𝑡  (30) 

Constraint (31) shows that blood donations 

donated by blood donors in all periods 

cannot be more than the maximum blood 

donated by them. 

∑ ∑ 𝑄𝑖𝑗𝑡

𝑡

≤ 𝑚𝑖

𝑗

   (31) 

Constraint (32) shows the capacity 

constraints of blood collection centers and 

ensures that the blood volume received by 

the fixed and mobile blood centers in each 

period of the blood donors cannot increase 

the capacity of blood collection centers. 

∑ 𝑄𝑖𝑗𝑡

𝑖

≤ 𝑐𝑗𝑡𝑋𝑗 + 𝑏𝑗𝑡 ∑ 𝑍𝑗𝑙𝑡

𝑙

   

(32) 

Constraint (33) shows how many 

ambulances with specific capacity are 

needed to transfer blood from each blood 

collection center to each laboratory. 

(33) 𝑣𝑣𝑗𝑢𝑡 ≥
𝑛𝑗𝑢𝑡

𝑐𝑎𝑝
      

Constraint (34) shows the balance in the 

blood collection centers. As it ensures that 

all blood collected in blood collection 

centers is transferred to labs by ambulances 

of a specified capacity. 

(34) ∑ 𝑛𝑗𝑢𝑡

𝑢

= ∑ 𝑄𝑖𝑗𝑡

𝑖
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Constraint (35) shows the balance in 

experiments, as it ensures all blood 

transmitted from the blood collection centers 

to the labs is transmitted to the blood centers 

by ambulances of known capacity. 

∑ 𝑛𝑗𝑢𝑡

𝑗

= ∑ 𝑚𝑘𝑡 . 𝑓𝑘𝑢𝑡

𝑘

 
(35) 

Constraint (36) shows that each blood center 

is assigned only to one lab. 

∑ 𝑓𝑘𝑢𝑡

𝑢

= 1   (36) 

Constraint (37) shows that the number of 

ambulances from a lab for the transfer of 

blood-to-blood centers should be equal to the 

number of ambulances returned to the 

laboratory. 

∑ 𝑥0𝑘𝑗𝑡

𝑘

= ∑ 𝑥𝑘0𝑢𝑡

𝑘

   (37) 

Constraints (38) and (39) ensure that each 

blood center is met exactly following the 

departure of the ambulance from the lab and 

is satisfied with the demand, either on the 

path to the ambulance and after having met a 

blood center and meeting its blood demand 

by ambulance. These constraints also help 

create paths between bloods centers exactly 

assigned to a specific lab. 

∑ 𝑥𝑒𝑘𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡 
(38) 

∑ 𝑥𝑘𝑒𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡         (39) 

Constraints (40) and (41) are considered for 

the purpose of eliminating sub-tour and 

imposing ambulance capacity constraints. 

(40) 𝑤𝑘𝑡 − 𝑤𝑘ˊ𝑡 + 𝑐𝑎𝑝 ∑ 𝑥𝑘𝑘ˊ𝑢𝑡

𝑢

≤ 𝑐𝑎𝑝
− 𝑚𝑘𝑡    

𝑚𝑘𝑡 ≤ 𝑤𝑘𝑡 ≤ 𝑐𝑎𝑝          (41) 

 

Constraint (42) ensures that the level of 

inventory at the end of the previous period 

plus the amount of blood received during 

this period, minus the level of inventory at 

the end of this period, plus the amount of 

deficits should be equal to the demand for 

the blood center in this period. 

Ikt−1 + mkt − Ikt

= dkt                    
(42) 

Constraint (43) shows the capacity 

constraints of blood centers. 

𝐼𝑘𝑡 ≤ maxcap𝑘   (43) 

Constraint (44) shows the capacity of the 

labs. 

∑ 𝑛𝑗𝑢𝑡

𝑛

𝑗

≤ 𝐶𝑎𝑢𝑡   
(44) 

The constraints (45) and (46) and (47) are 

considered to calculate the reliability of the 

specified routes. 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≥ (1 − 𝑥𝑒𝑒ˊ𝑢𝑡)   (45) 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≤ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡

+ (1
− 𝑥𝑒𝑒ˊ𝑢𝑡)     

(46) 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

≥ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡  

(47) 

Considering the three recent constraints, as 

the reliability of the route is equal to the 

multiplication of the selected routes and our 

goal from applying these constraints is to 

prevent the multiplication of these paths 

from being zero (i.e. all the selectable path 

are reliable) provide a new variable 

(Reliability = X.R), which once gives zero to 

x and put in the three constraints that the 

answer to the three constraints is Reliability 

= 1 (ensuring the reliability of the path) and 

once give one to x where the answer of the 

sum of the three constraints is Rx. As x is the 

path selection and must be one, the 

reliability of the path is guaranteed in this 
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case as well. Finally, the mathematical 

model presented in this study was presented 

as Equation (48): 

𝑀𝑖𝑛 𝑍1 = ∑ 𝑓𝑗𝑋𝑗

𝑗

+ ∑ ∑ ∑ 𝑐1𝑗𝑢𝑣𝑣𝑗𝑢𝑡

𝑡𝑢𝑗

+ ∑ ∑ ∑ 𝑥0𝑒ˊ𝑢𝑡𝑐2𝑢𝑘

𝑡𝑢𝑘

+ 𝑥𝑒0𝑢𝑡𝑐2𝑢𝑘

+ ∑ ∑ ∑ 𝑐3𝑘𝑘ˊ𝑥𝑘𝑘ˊ𝑢𝑡

𝑡𝑢𝑗

+ ∑ ∑ ∑ 𝑜𝑖𝑗𝑡 . 𝑄𝑖𝑗𝑡

𝑡𝑗𝑖

+ + ∑ ∑ ∑ 𝑣𝑗𝑙𝑡 . 𝑍𝑗𝑙𝑡

𝑡𝑙𝑗

+ ∑ ∑ ℎ𝑘𝐼𝑘𝑡

𝑘𝑡

 

𝑀𝑎𝑥 𝑍2 = ∏ ∏ ∏ ∏ 𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡

𝑡𝑢𝑒ˊ𝑒

 

Subject to: 

𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

≤ 1 

∑ 𝑍𝑗𝑙𝑡

𝑙

≤ ∑ 𝑍𝑗𝑙𝑡−1

𝑙

 

𝑦𝑖𝑗𝑡 ≤ 𝑋𝑗 + ∑ 𝑍𝑗𝑙𝑡

𝑙

 

𝑟𝑖𝑗𝑦𝑖𝑗𝑡 ≤ 𝑅 

𝑄𝑖𝑗𝑡 ≤ 𝑀. 𝑦𝑖𝑗𝑡  

∑ ∑ 𝑄𝑖𝑗𝑡

𝑡

≤ 𝑚𝑖

𝑗

 

∑ 𝑄𝑖𝑗𝑡

𝑖

≤ 𝑐𝑗𝑡𝑋𝑗 + 𝑏𝑗𝑡 ∑ 𝑍𝑗𝑙𝑡

𝑙

 

𝑣𝑣𝑗𝑢𝑡 ≥
𝑛𝑗𝑢𝑡

𝑐𝑎𝑝
 

∑ 𝑛𝑗𝑢𝑡

𝑢

= ∑ 𝑄𝑖𝑗𝑡

𝑖

 

∑ 𝑛𝑗𝑢𝑡

𝑗

= ∑ 𝑚𝑘𝑡 . 𝑓𝑘𝑢𝑡

𝑘

 

∑ 𝑓𝑘𝑢𝑡

𝑢

= 1 

∑ 𝑥0𝑘𝑗𝑡

𝑘

= ∑ 𝑥𝑘0𝑢𝑡

𝑘

 

∑ 𝑥𝑒𝑘𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡 

∑ 𝑥𝑘𝑒𝑢𝑡

𝑒

= 𝑓𝑘𝑢𝑡 

𝑤𝑘𝑡 − 𝑤𝑘ˊ𝑡 + 𝑐𝑎𝑝 ∑ 𝑥𝑘𝑘ˊ𝑢𝑡

𝑢

≤ 𝑐𝑎𝑝 − 𝑚𝑘𝑡 

𝑚𝑘𝑡 ≤ 𝑤𝑘𝑡 ≤ 𝑐𝑎𝑝 

𝐼𝑘𝑡−1 + 𝑚𝑘𝑡 − 𝐼𝑘𝑡 = 𝑑𝑘𝑡 

𝐼𝑘𝑡 ≤ maxcap𝑘 

∑ 𝑛𝑗𝑢𝑡

𝑛

𝑗

≤ 𝐶𝑎𝑢𝑡 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 = 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≥ (1 − 𝑥𝑒𝑒ˊ𝑢𝑡) 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≤ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡 + (1

− 𝑥𝑒𝑒ˊ𝑢𝑡) 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≥ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑒𝑒ˊ𝑥𝑒𝑒ˊ𝑢𝑡  

𝑋 𝑗́ ∈ {0,1} 

𝑦𝑖𝑗𝑡 ∈ {0,1} 

𝑍𝑗𝑙𝑡 ∈ {0,1} 
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𝑄𝑖𝑗𝑡 ≥ 0 

𝐼𝑘𝑡 ≥ 0 

𝜎𝑘𝑡 ≥ 0 

𝑓𝑢𝑘𝑡 ∈ {0,1} 

𝑥𝑒𝑒ˊ𝑢𝑡 ∈ {0,1} 

𝑛𝑗𝑢𝑡 ≥ 0 

𝑣𝑣𝑗𝑢𝑡 ≥ 0 , integer 

𝑚𝑘𝑡 ≥ 0 

𝑤𝑘𝑡 ≥ 0 

𝑟𝑒𝑙𝑖𝑒𝑒ˊ𝑢𝑡 ≥ 0 

 

4. Findings 
 

4.1. Criteria of Comparison  

 

In this research, three comparison criteria for 

evaluating the efficiency of the five multi-

criteria decision making methods proposed 

are considered. These criteria including the 

value of the first objective function, the 

value of the second objective function, and 

Cpu-Time are considered. The firstly and 

thirdly mentioned criteria are of the 

minimum type. This means that the lower 

the corresponding values of these criteria, 

the better results obtain. Since the second 

criterion is of maximization type, the higher 

this index, the better concludes. 

In order to solve the mathematically 

presented model, multi-criteria decision-

making methods have been used. The five 

methods mentioned have been coded by the 

Gomez software and the results of their 

calculations are presented in table 4. The 

mathematical model presented in table 4 is 

applied to the case study and is solved by 

solving methods and the amount of each of 

the objective functions as well as the 

computational time of each solution method 

has been reported.  

 

Table 4. The computational results 

Methods 
The value of the first 

objective function 

The value of the second objective 

function 

Time to 

solve 

Max-Min 2665.927 0.217 10783 

LP-metric 2663.860 0.217 7515 

Achieving the ideal 2660.494 0.198 8645 

Utility function 2658.884 0.168 7381 

Ideal planning 2656.087 0.125 8048 

 

The figures 2 and 3 show a schematic 

representation of the Pareto solutions 

obtained from the above solution methods as 

well as the solution time of each of them.  

To provide further details of the solution 

obtained by the above methods and 

validation of the mathematically presented 

model, the solution obtained from the utility 

function method is shown in detail. The 

figure 4 shows the network created in the 

first period (first 24 hours). According to 

Jabarzadeh et al. (2014), each period is 

considered to be 24 hours, since the highest 

level of demand occurs during that period. 

The second laboratory is not used and the 

blood centers demands are met from the first 

laboratory. Also, the figure 5 shows the 

supply chain network created in the second 

period.
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Figure 2. The obtained Pareto solutions using five solution methods as well as the optimized 

solution obtained from optimization of the objective functions 

 

Figure 3. The computational time of each of the five solution methods 

 

 

Figure 4.The figure of created network by the first period 
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Figure 5. The figure of created network by the second period 

 

The tables 5 and 6 are presented to provide 

detailed results regarding the amount of 

blood donation per unit and the level of 

blood transportation among facilities. Table 

5 shows the donated blood amounts in each 

blood collection center. Also, the blood 

transported from each blood collection 

center to each laboratory per period is shown 

in Table 6. 

 

Table 5. The donated blood amounts in each 

blood collection center per period 

Donors 

Blood 

Collection 

Centers 

period 
Donation 

amount 

1 2 1 166 

2 2 1 278 

5 2 1 6 

4 3 1 200 

2 5 1 119 

22 5 1 81 

2 6 1 2 

3 6 1 198 

5 2 2 305 

 

Table 6. The amount of blood transported 

from each blood collection unit to each 

laboratory per period 
Blood 

Collection 

Centers 

Laboratory period 
transmission 

amount 

2 1 1 450 

3 1 1 200 

5 1 1 200 

6 1 1 200 

2 1 2 305 

One observes that the flows in the above 

network are properly established and the 

mathematical model of the problem is 

correctly formulated. In the discussion of 

Pareto or Cara solutions, the solutions 

making the good balance among the 

optimization of all target functions are better. 

On the other hand, a large number of various 

solutions let the blood transfusion 

organization to have the capability to choose 

preferred solution among the different 

solutions of different costs and reliability. 

According to the results, it is observed that 

the utility function methods, the LP-metric, 

and the goal attainment method have 

obtained better results because the answers 

provided by them provide a good balance 

between the amounts of the two objective 

functions. However, if reliability is 

preferable to the blood organization, the 

organization can make use of the Max-Min 

method because it offers a high reliability 

solution. On the other hand, if minimizing 

the total cost of the supply chain is of more 

important to the blood organization, it can 

make use of a method like of goal 

programming, since this method offers a 

solution of lower than cost to that of other 

methods.   

Occasionally, the solution time index is also 

important for the decision maker. On the 

other hand, sometimes, it is difficult picking 

up a Pareto solution from a set of Pareto 

solutions. Therefore, in this research, multi-
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criteria decision-making methods have been 

used to select the best solution. These 

methods consider the simultaneously 

importance of each of the three comparison 

indices for determining the best solution 

method. 

 

4.2. Multi-criteria decision making 

methods 

 

Considering the five aforementioned 

methods do not similarly act upon the 

problem presented in this research, we make 

use of multi-criteria decision making 

methods to determine the best solution 

method in this section. Firstly, the decision 

matrix with respect to comparison indices is 

created in table 7. 

 

Table 7. Decision Matrix  

Methods 

The value of 
the first 

objective 

function 

The value of 
the second 

objective 

function 

Time 

to 
solve 

Max-Min 2665.927 0.217 10783 

LP-metric 2663.860 0.217 7515 

Achieving 

the ideal 
2660.494 0.198 8645 

Utility 
function 

2658.884 0.168 7381 

Ideal 

planning 
2656.087 0.125 8048 

 

4.3. Entropy method 

 

The results of the entropy method and the 

weight determined by this method for 

various indices are shown in the following 

table. Table 8 shows the determined weight 

for each index by entropy method. 

To determine the best solution method 

considering the desirable indices, Topsis 

method (Tadic et al., 2014) has been used. 

After calculating the positive and negative 

ideals and determining the similarity rate for 

each of the solution methods, the following 

table is obtained as the output of the Topsis 

method. The table reports the similarity rates 

for each of solution methods and ranks them 

out regarding their similarity rates. 

 

Table 8. Calculated weight by Entropy 

method for each index  

Weight 

The value of 

the first 

objective 

function 

The value of 

the second 

objective 

function 

Time 

to 

solve 

Wj 0.0926 0.6467 0.2607 

 

Table 9. The results of the Topsis method 

 si
+ rate 

Max-Min 0.6943 3 

LP-metric 0.9843 1 

Achieving the ideal 0.7613 2 

Utility function 0.5466 4 

Ideal planning 0.2607 5 

 

According to the obtained results of the 

Topsis method (table 9), the best method for 

solving the problem regarding 

simultaneously consideration of the three 

indices of the first-objective function value, 

the second-objective function value and 

Cpu-Time, is LP-method, since this method 

is of the highest similarity rate among the 

other desirable solution methods. 

 

4.4. Sensitivity analysis 

 
In this section, sensitivity analysis is used to 

determine effects on the objective function 

values via varying the model parameters 

ones. For this purpose, the values of the 

parameters are changed in percentages and 

their effect on the objective function is 

investigated. Table 10 and Figure 6 show the 

results of sensitivity analysis. 
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Table 10. Results of the sensitivity analysis 
Parameter   Changes (%) The value of the target function 

R 

-50 1.51E+05 

-25 1.51E+05 

0 1.50E+05 

+25 1.49E+05 

+50 1.49E+05 

𝑑𝑘𝑡 

-50 1.49E+05 

-25 1.49E+05 

0 1.50E+05 

+25 1.51E+05 

+50 1.52E+05 

𝑐𝑗𝑡 

-50 1.53E+05 

-25 1.51E+05 

0 1.50E+05 

+25 1.50E+05 

+50 1.50E+05 

𝑚𝑎𝑥𝑐𝑎𝑝𝑘 

-50 1.53E+05 

-25 1.52E+05 

0 1.50E+05 

+25 1.50E+05 

+50 1.50E+05 

Cap 

-50 1.51E+05 

-25 1.51E+05 

0 1.50E+05 

+25 1.50E+05 

+50 1.50E+05 

 

 
Figure 6. Results of the sensitivity analysis 

 

In the table 10, the value of each of the main 

parameters of the mathematical model 

presented of the rates -50, -25,0,+25,+50 

percentage are changed and the effect of 

reducing and increasing them on the optimal 

value of the objective function are 

investigated. To take a closer look at the 

results, the figure 6 is presented and the 

results are carefully reviewed. 

According to the above results, a 50% 

reduction in demand and an increase of 25% 

and 50% in the coverage radius of blood 

collection centers yields the most reduction 

in costs of the supply chain. Hence, the more 

increasing the coverage radius of the blood 
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collection centers, the more reducing the cost 

of the entire supply chain. On the other hand, 

a 50% reduction in the capacities of the 

collection blood and blood centers creates 

the most increasing in the related costs and 

the cost of blood supply chain.  

 

5. Discussion 
 

The results obtained in this research showed 

that, the mathematical model presented 

creates a low-cost blood supply and high 

reliability chain after taking place an 

earthquake to supply hospitals demanding 

the blood. By analysing the sensitivity, we 

found out, the more increasing the number of 

potentially temporary facilities, the more 

decreasing the amount of the first objective 

function yields. This decreasing continues 

until the supply chain encounters a shortage, 

thus when not encountering with, the first 

objective function increases with a very 

small slope. Analysing the sensitivity on the 

number of permanent facilities, suggests us, 

the more increasing the number of 

permanent facilities, the more increasing the 

first objective function. Also, analysing the 

sensitivity to the facility capacity parameter 

determined that totally, the first objective 

function is reduced, and this reduction 

continues until we encounter to a deficient. 

Since the deficit reaches to zero, the first-

objective function gradually increases. 

Another key parameter in which sensitivity 

analysis was performed is the demand 

parameter. If demand increases, the cost of 

the supply chain increases as well. The 

performed sensitivity analysis shows us off 

the effect of the number of permanent and 

temporary facilities, facility capacity, and 

demanding values on the optimal value of 

the objective functions and the choice of 

facilities. Consequently, the model 

implementation indicates it is consistent with 

reality. Accordingly, the modelling 

accomplished by this research creates the 

possibility for preventing the formation, 

starting up and increasing the overcapacity 

of permanent and temporary facilities.  

In the mathematical model presented in this 

research using the implemented real data on 

Tehran city and different solution methods. 

The results and solutions obtained from 

different methods have been investigated. By 

taking into account different comparison 

indices, the efficiency of solution methods 

are investigated and the best solution was 

determined using entropy and Topsis 

methods. According to the obtained results, 

LP- metric method of the similarly highest 

rate was regarded as the best solution 

method. As well, the validity of the proposed 

model was confirmed by analysing the 

sensitivity for affecting parameters in model, 

using the results of this analysis and 

increasing 25% and 50% the radius of 

coverage of blood collection centers yields 

the most cost reduction in the supply chain. 

Therefore, in one hand, increasing the 

coverage radius of blood collection centers 

could considerably reduce the total cost of 

the system. On the other hand, reducing 50% 

in capacities of blood collection centers and 

blood centers has the greatest impact on 

augmentation of costs and the costs of the 

blood supply chain.  

 

6. Conclusion 
 

In this research, for the first time, we 

discussed how blood transportations (which 

routes and what number of ambulances 

should we choose, and, to which centers 

should we transmit blood concluding the 

least paved routes and time for fulfilling the 

most blood demands) are carried out via 

ambulance in the transmission paths of high 

reliability in the supply chain network and 

how the number of ambulances required are 

determined.  

Also, for the first time, a new level of labs 

was introduced to the blood supply chain 

network to provide and design a more 

realistic model of the supply chain network. 

Finally, this research implies that the design 

of the supply chain network and its models 

are very widespread and the different 
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solution methods may be considered. 

Considering new hypotheses, we can 

develop the previous models and bring them 

closer to actual and applicable 

circumstances. 

The main limitation in this study was to 

estimate the reliability of the paths between 

facilities in the BSCN. Regarding the high 

complexity of calculating the reliability of 

blood transfusion pathways, a uniform 

distribution was used to generate problem 

data. Determination of exact reliability in an 

earthquake could be a relevant subject in the 

future studies. Also, because of considering 

a definitive blood demand in this research, 

most of the data are based on the studies of 

other researches which their model 

considered in uncertainty condition. 

One of the suggestions for future studies in 

order to expand the mathematical model in 

the BSCN could be taking into consideration 

uncertainty in the parameters of the proposed 

mathematical model, or, studying of other 

objective functions such as duration of 

transportation and service. Taking into 

account other levels of supply chain like 

hospitals and separation of all blood 

products in laboratories and transferring 

them to blood centers, could be among of the 

other perspectives of this research for future 

studies. During this research, we tried to 

improve and optimize the BSCN; however, 

due to the wide-ranging nature of earthquake 

crisis, many problems remain to study in the 

future to develop more comprehensive 

model in this regard. 
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