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STATISTICAL CONSIDERATIONS FOR LOT-

BY-LOT ACCEPTANCE/REJECTION 

SAMPLING WITH AN ATTRIBUTE 

 
Abstract: The standard procedure for lot-by-lot 

acceptance/rejection sampling described in literature makes 

always a decision. If there are more invalid items in the 

sample than specified, then the lot is rejected, otherwise the lot 

is accepted. However, if the actual proportion of invalid items 

in the lot is close to the accepted quality level then it is – in 

principle – impossible to control the customer’s and the 

producer’s risk with a reasonable sample size. The published 

standard procedure can result in acceptance of the lot even if 

there is insufficient information. We think this is unfair to the 

customer. Three statistical methods with a common acceptable 

quality limit are proposed and discussed: A simple procedure, 

confidence intervals, and finally a statistical test. The idea of a 

statistical test, its application in lot-by-lot acceptance/rejection 

sampling, and the proposed statistical test are described in 

detail and with examples. Additionally, determination of 

sample size and multiple step sampling plans are 

characterized. 

Keywords: confidence interval, one-sided versus two-sided 

hypothesis, sample size, sampling plan, statistical test 

 

 

1. Introduction1 
 

The standard procedure for lot-by-lot 

acceptance/rejection sampling for attributes 

is described in literature, e.g. by 

Montgomery (2013), Kreyszig (2011), 

Uhlmann (1982), and Woodall (1997). A 

similar procedure is given by ISO 2859 

(2011), by ANSI/ASQ Z1.4 (2008) and by 

MIL-STD 105E (1989). This most 

commonly used procedure uses an operation 

characteristic (OC) and delivers sample size 

and acceptance number. If the actual number 

of invalid items in the sample is larger than 
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the acceptance number then the lot is 

rejected, otherwise the lot is accepted. 

This standard procedure always makes a 

decision. It is based on the customer’s and 

the producer’s risks, the producer’s 

acceptable quality level (AQL), the 

customer’s rejectable quality level (RQL), 

and the relationship AQL < RQL. The 

relationship AQL < RQL is demanded by the 

way the statistical test is employed in the 

standard procedure, it is not desired by needs 

of quality control. 

Assume that a customer wants to achieve 

high quality. The relationship AQL < RQL 

of the standard procedure forces him to 

accept a quality level worse than the quality 

level established by the producer. We think 

mailto:wilhelm.gaus@uni-ulm.de
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this is unfair. 

The difference RQL – AQL of the standard 

procedure has a decisive effect on the 

required sample size. If (RQL – AQL) 

approaches zero then the sample size 

approaches infinity. For practitioners of 

quality control it is unintelligible that a 

similar (or even the same) acceptable quality 

limit of producer and customer provoke an 

“explosion” of the sample size. Another 

drawback of the standard procedure is that 

the customer’s risk is not always controlled 

if the lot is accepted. 

We think that the way a statistical test is 

used in the standard procedure does not meet 

the requirements of quality control, 

especially for customers. Therefore we 

propose a modified application of a 

statistical test for quality control. Our 

proposal can be applied for any AQL and 

any RQL. To simplify the paper we 

concentrate on a common acceptable quality 

limit (CAQL). Further we think that the 

customer’s risk is as important as the 

producer’s risk. 

Our paper describes statistical procedures 

ranging from a simple technique to a 

statistical test where the customer’s risk (if 

the lot is accepted), and respectively the 

producer’s risk (if the lot is rejected), are 

truly controlled. However, if the proportion 

of invalid items in the lot is close to CAQL, 

then a statistical decision with controlled 

risks needs an extremely large sample or a 

decision with controlled risks is impossible. 

As statisticians we are convinced that we 

have to tell our users not only our methods, 

but their limitations as well. 

Only investigation of a single lot is covered 

by this paper. Investigation of subsequent 

lots done with control cards is another issue. 

However, it is possible to enlarge the 

proposed methods to encompass the quality 

control of subsequent lots. 

Industrial production and statistics often use 

different terminology. In the appendix we 

give an overview of the terms, variables, and 

symbols used. 

Lot-by-lot acceptance/rejection sampling is a 

decision if Q ≤ CAQL and therefore quality 

is sufficient so, as a consequence, the lot is 

accepted or if Q > CAQL, therefore quality 

is insufficient, and the lot is rejected. If this 

decision is based on a sample it is a 

statistical decision. Statistical decisions are 

often, but not always, correct, which is why 

the probability for a wrong decision should 

be controlled. 

 

2. What has influence on the 

sample size n? 
 

Large samples deliver more information than 

small ones. On the one hand a sample should 

be large enough to enable a decision on the 

quality of the lot with acceptable customer’s 

and producer’s risks. On the other hand a 

sample should be as small as possible to save 

effort, time, and costs. Therefore, sample 

size is a crucial issue.  

CAQL has most influence on n, because it 

varies extremely. It may range from, for 

example, 0.20 to 10-5. In contrast, the 

customer’s risk and the producer’s risk vary 

much less, typically between 10% and 1%. 

The smaller the CAQL, the less invalid items 

we expect in the sample. But a reasonable 

number of invalid items has to be expected 

in the sample (Section 3). Thus, the smaller 

the CAQL the bigger n has to be. 

If Q, the unknown proportion of invalid 

samples in the lot, is close to the CAQL then 

a decision is difficult. If small deviations of 

Q from CAQL should be detected then a 

large sample is needed. Or vice versa: If the 

sample size is small then only large 

deviations of Q from CAQL will give a 

significant result and a safe decision. 

The selected αcustomer and the selected αproducer 

also have influence on the required sample 

size n. If the risks for wrong decisions have 

to be small then they are difficult to control. 

Thus, the smaller αCustomer and the smaller 

αProducer the bigger n has to be. 

Does the lot size N influence the sample size 

n? Obviously, it is easier to draw a large 
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sample from a large lot than from a small lot. 

Conversely, if a large sample is drawn from 

a small lot then the advantages of sampling 

and statistics disappear. Moreover, a wrong 

decision – regardless of whether the 

disadvantage is for the customer or the 

producer – is more important for a large lot 

than for a small lot. Thus, for large lots a 

smaller αCustomer and a smaller αProducer are 

recommended compared to a small lot. N 

appears in none of the formulas used in this 

paper except for the hypergeometric 

distribution which is mentioned in Section 7. 

Thus, the lot size has no influence on the 

sample size as long as the hypergeometric 

distribution is not used. 

Finally, we have to acknowledge that if the 

sample size is reduced, then larger risks must 

be accepted. If a higher CAQL is accepted 

then n may be smaller. A larger αCustomer and 

a larger αProducer also allows for a smaller n.  

 

3. Expected number of invalid 

items in the sample 
 

The actual number x of invalid items in the 

sample is an observed frequency. The 

expected number of invalid items in the 

sample – E(x) – is an expected frequency 

and can be computed beforehand. The 

observed frequency x is expressed by a 

natural number (0, 1, 2, 3, etc.), but the 

expected frequency E(x) is expressed by a 

real number (e.g. 0.67, 1.23, 4.50). 

The expected number of invalid items in the 

sample is E(x) = n  Q. This doesn’t help 

because Q is usually unknown. But 

acceptance/rejection sampling wants to find 

out if Q is less or bigger than CAQL. 

Therefore, n  CAQL can serve as an 

expected value for E(x) on which to base the 

decision about the quality of the lot. If 

Q = CAQL is assumed then 

E(x) = n  CAQL invalid items in the sample 

are expected. For example, if n = 250 and 

CAQL = 0.01 = 1% then 250  0.01 = 2.5 

invalid items in the sample are expected. 

How large should E(x) be? It is easy to 

understand that E(x) should be a reasonable, 

not too small number. If e.g. E(x) = 0.1 we 

have no realistic chance to observe an 

invalid item in the sample even if Q is 

somewhat larger than CAQL. If E(x) is 

approximately 1.0, often there will actually 

be no invalid item in the sample, i.e. we 

observe x = 0. The larger E(x) is, the safer is 

the decision to reject or to accept the lot, 

respectively, regardless of which method is 

used for the decision. As a rule of thumb 

E(x) should be at least  2.5, even better at 

 4.5, and good at  8.5. The reason for this 

recommendation is given in Section 7. 

From the equation E(x) = n  CAQL we get 

the formula: 

 

n = E(x) / CAQL 

 

This is a first and simple approach to 

determine the sample size n. Example: If 

CAQL is set to be 0.01 and E(x) = 2.5 is 

selected, then n = 2.5 / 0.01 = 250. One may 

use Table 1 to find some basic sample size 

determinations based on this formula. 

 

Table 1. Sample Size n for a Desired Expected Number of Invalid Items in the Sample 

E(x) = Expected number of invalid items in the sample 

 1.5 2.5 3.5 4.5 6.5 8.5 

CAQL = 0.100 15 25 35 45 65 85 

CAQL = 0.063 24 40 56 71 103 135 

CAQL = 0.040 38 63 88 113 163 213 

CAQL = 0.025 60 100 140 180 260 340 
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Table 1. Sample Size n for a Desired Expected Number of Invalid Items in the Sample 

(continued) 

E(x) = Expected number of invalid items in the sample 

 1.5 2.5 3.5 4.5 6.5 8.5 

CAQL = 0.016 94 156 219 281 406 531 

CAQL = 0.010 150 250 350 450 650 850 

CAQL = 0.006 3 238 397 556 714 1 032 1 349 

CAQL = 0.004 0 375 625 875 1 125 1 625 2 125 

CAQL = 0.002 5 600 1 000 1 400 1 800 2 600 3 400 

CAQL = 0.001 6 938 1 563 2 188 2 813 4 063 5 313 

CAQL = 0.001 0 1 500 2 500 3 500 4 500 6 500 8 500 

CAQL = 0.000 63 2 381 3 968 5 556 7 143 10 317 13 492 

CAQL = 0.000 40 3 750 6 250 8 750 11 250 16 250 21 250 

CAQL = 0.000 25 6 000 10 000 14 000 18 000 26 000 34 000 

CAQL = 0.000 16 9 375 15 625 21 875 28 125 40 625 53 125 

CAQL = 0.000 10 15 000 25 000 35 000 45 000 65 000 85 000 

Reading example: If CAQL is set to 4% = 0.04 and 3.5 invalid items wanted to be expected in the 

sample, then a sample size of n = 88 is needed. 

 

4. Lot acceptance/rejection with a 

simple procedure 
 

The simplest procedure to decide whether to 

accept or reject a lot is to compare x with 

E(x). E(x) is computed under the assumption 

that the actual proportion of invalid items in 

the lot is equal to CAQL. In Sections 6 and 7 

this assumption will be called “null 

hypothesis”. If the sample actually includes 

less invalid items than expected x < E(x), 

then we assume Q < CAQL and accept the 

lot. Otherwise, if x > E(x) we assume that 

Q > CAQL and reject the lot. However, x 

stems from a sample and is therefore an 

estimate. Due to sampling errors it is 

sometimes too small and sometimes too 

large. This can lead to a wrong decision on 

the investigated lot. But in the long run 

(many investigated lots) the decisions are 

unbiased. 

No decision is possible if x = E(x). To 

prevent this situation the sample size can be 

established in a way that E(x) = n  CAQL is 

+0.5 larger than an integer. Then a decision 

if x > E(x) or if x < E(x) is always possible 

because the observed number of invalid 

items in the sample x is always an integer. 

For example, CAQL is established as 0.025. 

If n = 220 then E(x) = 5.5 (instead of 

E(x) = 5.0 with n = 200) and a decision is 

always possible. 

The decisions of the simple procedure are 

unbiased and therefore as correct as 

decisions proposed by more complicated 

procedures. The larger the deviation x from 

E(x) the safer is the decision. Readers 

interested in the customer’s or the producer’s 

risk should read Section 7. 

The simple procedure can be modified in a 

way that if the deviation of x from E(x) is 

small, say <1, <2 or <3, then no decision on 

acceptance or rejection of the lot is taken but 

the sample size is increased (see Section 8). 

 

5. Lot acceptance/rejection with 

confidence interval 
 

Each sample taken from a population has a 

sampling error. The sample error is 

sometimes larger, sometimes smaller, but it 

always exists. Therefore, a sample can only 
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provide an estimator for the true value of the 

population. The sample error is the deviation 

of the value estimated from the sample and 

the true value in the population. It is always 

unknown (unless the whole population is 

inspected), but small errors occur more often 

than big errors. 

The statistical method to estimate how large 

the sample error is maximally with a given 

probability, is called confidence interval. 

The true value of the population lies 

somewhere within the confidence interval 

with a predefined probability. This 

probability is called “confidence probability” 

and has to be established, often 0.95, 0.90 or 

0.80 is selected. 

A confidence interval covers 

underestimation as well as overestimation. 

Therefore statisticians say that confidence 

intervals are two-sided. This is analogous to 

a two-sided hypothesis mentioned in the 

following section. However, producers will 

look at the upper bound of a confidence 

interval to see if Q is likely to be less than 

CAQL and therefore the lot has to be 

accepted. In contrast, consumers will look at 

the lower bound to see if Q is likely to be 

bigger than CAQL and therefore the lot has 

to be rejected. 

A sample of size n is taken, the number of 

invalid items in the sample x is determined, 

and then the confidence interval for Q is 

computed from x, n, and the selected 

confidence probability. Now it can be 

checked, whether the confidence interval is 

below CAQL (lot will be accepted) or above 

CAQL (lot will be rejected) or if CAQL is 

within the confidence interval. Figure 1 

gives a more detailed look at 7 examples. 

Confidence intervals for the proportion of 

invalid items in the lot are given in Tables 

2(a, b, c). 

 

 

 
Figure 1. Confidence Intervals for Q, the Proportion of Invalid Items in the Lot 

 

Legend to Fig.1 

 

These 7 examples were computed with the 

following indications: 

 Sample size n = 210 

 αcustomer = αproducer = 2.5%. Thus, 

confidence probability = 0.95 

 CAQL = 0.05 = 5% 

 Therefore E(x) = n  CAQL = 210  

0.05 = 10.5 
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Example 1: x = 3, i.e. the proportion of 

invalid items in the sample is 

3/210 = 1.43%: The 95% confidence 

interval ranges from 0.29% to 4.12%. 

The upper limit of the confidence 

interval is below CAQL. It is obvious 

that Q < CAQL. Decision: Lot is 

accepted. The customer’s risk < 2.5%. 

Example 2: x = 4, i.e. the proportion of 

invalid items in the sample is 

4/210 = 1.90%: The 95% confidence 

interval ranges from 0.52% to 4.80%. 

The upper limit of the confidence 

interval is very close to CAQL. It is 

obvious that Q ≤ CAQL. Decision: Lot 

is accepted. The customer’s risk  2.5%. 

Example 3: x = 7, i.e. the proportion of 

invalid items in the sample is 

7/210 = 3.33%: The 95% confidence 

interval ranges from 1.35% to 6.75%. 

The upper limit of the confidence 

interval is above the CAQL but most of 

the confidence interval is below CAQL. 

Thus, no save decision is possible, but 

there is a trend that Q is less than 

CAQL. If, nevertheless, the lot is 

accepted, then the customer’s 

risk > 2.5%. 

Example 4: x = 11, i.e. the proportion of 

invalid items in the sample is 

11/210 = 5.24%: The 95% confidence 

interval ranges from 2.64% to 9.18%. 

The confidence interval is nearly 

symmetrical to CAQL. Maybe 

Q < CAQL, maybe Q > CAQL. A 

decision is not possible. 

Example 5: x=14, i.e. the proportion of 

invalid items in the sample is 

14/210 = 6.67%: The 95% confidence 

interval ranges from 3.69% to 

10.93%.The lower limit of the 

confidence interval is lower than the 

CAQL but most of the confidence 

interval is above CAQL. Thus, no save 

decision is possible, but there is a trend 

that Q is bigger than CAQL. If, 

nevertheless, the lot is rejected, then the 

producer’s risk > 2.5%. 

Example 6: x = 17, i.e. the proportion of 

invalid items in the sample is 

17/210 = 8.10%: The 95% confidence 

interval ranges from 4.79% to 12.64%. 

The lower limit of the confidence 

interval is very close to CAQL. It is 

obvious that Q  CAQL. Decision: Lot 

is rejected. The producer’s risk  2.5% 

Example 7: x = 20, i.e. the proportion of 

invalid items in the sample is 20/210  = 

9.52%: The 95% confidence interval 

ranges from 5.91% to 14.33%.The lower 

limit of the confidence interval is above 

CAQL. It is obvious that Q > AQL. 

Decision: Lot is rejected. The 

producer’s risk < 2.5%. 

 

Table 2a. Confidence Intervals for Q with Confidence Probability = 0.95 

 x = 0 x = 1 x = 2 x = 3 x = 4 

 x = 5 x = 6 x = 7 x = 8 x = 9 

n =10 0.00  − 30.85 0.25  − 44.50 2.52  − 55.61 6.67  − 65.25 12.16  − 73.76 

 18.71  − 81.29 26.24  − 87.84 34.75  − 93.33 44.39  − 97.48 55.50  − 99.75 

n =16 0.00  − 20.59 0.16  − 30.23 1.55  − 38.35 4.05  − 45.65 7.27  − 52.38 

 11.02  − 58.66 15.20  − 64.57 19.75  − 70.12 24.65  − 75.35 29.88  − 80.25 

n =25 0.00  − 13.72 0.10  − 20.35 0.98  − 26.03 2.55  − 31.22 4.54  − 36.08 

 6.83  − 40.70 9.36  − 45.13 12.07  − 49.39 14.95  − 53.50 17.97  − 57.48 

n =40 0.00  − 8.81 0.06  − 13.16 0.61  − 16.92 1.57  − 20.39 2.79  − 23.66 

 4.19  − 26.80 5.71  − 29.84 7.34  − 32.78 9.05  −35.65 10.84  − 38.45 

n =63 0.00  − 5.69 0.04  − 8.53 0.39  − 11.00 0.99  − 13.29 1.76  − 15.47 

 2.63  − 17.56 3.58  − 19.59 4.59  − 21.56 5.65  − 23.50 6.75  − 25.39 
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Table 2a. Confidence Intervals for Q with Confidence Probability = 0.95 (continued) 

 x = 0 x = 1 x = 2 x = 3 x = 4 

 x = 5 x = 6 x = 7 x = 8 x = 9 

n =100 0.00  − 3.62 0.03  − 5.45 0.24  − 7.04 0.62  − 8.52 1.10  − 9.93 

 1.64  − 11.28 2.23  − 12.60 2.86  − 13.89 3.52  − 15.16 4.20  − 16.40 

n =160 0.00  − 2.28 0.02  − 3.43 0.15  − 4.44 0.39  − 5.38 0.69  − 6.28 

 1.02  − 7.14 1.39  − 7.98 1.78  − 8.81 2.18  − 9.61 2.60  − 10.41 

n =250 0.00  − 1.46 0.01  − 2.21 0.10  − 2.86 0.25  − 3.47 0.44  − 4.05 

 0.65  − 4.61 0.89  − 5.15 1.13  − 5.68 1.39  − 6.21 1.66  − 6.72 

n =400 0.00  − 0.92 0.01  − 1.38 0.06  − 1.79 0.15  − 2.18 0.27  − 2.54 

 0.41  − 2.89 0.55  − 3.24 0.71  − 3.57 0.87  − 3.90 1.03  − 4.23 

n =630 0.00  − 0.58 0.00  − 0.88 0.04  − 1.14 0.10  − 1.39 0.17  − 1.62 

 0.26  − 1.84 0.35  − 2.06 0.45  − 2.28 0.55  − 2.49 0.66  − 2.69 

n =1000 0.00  − 0.37 0.00  − 0.56 0.02  − 0.72 0.06  − 0.87 0.11  − 1.02 

 0.16  − 1.16 0.22  − 1.30 0.28  − 1.44 0.35  − 1.57 0.41  − 1.70 

 

n = sample size        x =number of invalid items in the sample 

The body of the table gives the confidence interval for Q in percent. 

Reading example: If a confidence probability of 95% is selected (i.e. customer’s risk of 2.5% and 

producer’s risk of 2.5%), the sample size is n = 160 and x = 0 invalid items were in the sample then Q can 

range from 0.00% to 2.28%. If the sample has x = 2 invalid items then Q can range from 0.15% to 4.44%. 

If the sample has x = 6 invalid items then Q can range from 1.39% to 7.98%. These statements on the size 

of Q are correct with a confidence probability of 0.95. 

These exact confidence intervals were computed with SAS version 9.4, proc freq, option binomial. They 

are based on Clopper and Pearson (1934). 

 

Table 2b. Confidence Intervals for Q with Confidence Probability = 0.90 

 x = 0 x = 1 x = 2 x = 3 x = 4 

 x = 5 x = 6 x = 7 x = 8 x = 9 

n =10 0.00  − 25.89 0.51  − 39.42 3.68  − 50.69 8.73  − 60.66 15.00  − 69.65 

 22.24  − 77.76 30.35  − 85.00 39.34  − 91.27 49.31  − 96.32 60.58  − 99.49 

n =16 0.00  − 17.07 0.32  − 26.40 2.27  − 34.38 5.31  − 41.66 9.03  − 48.44 

 13.21  − 54.83 17.78  − 60.90 22.67  − 66.66 27.86  − 72.14 33.34  − 77.33 

n =25 0.00  − 11.29 0.20  − 17.61 1.44  − 23.10 3.35  − 28.17 5.66  − 32.96 

 8.23  − 37.54 11.01  − 41.95 13.95  − 46.22 17.03  − 50.36 20.24  − 54.39 

n =40 0.00  − 7.22 0.13  − 11.32 0.90  − 14.92 2.08  − 18.26 3.49  − 21.44 

 5.06  − 24.50 6.74  − 27.47 8.51  − 30.37 10.36  − 33.20 12.27  − 35.98 

n =63 0.00  − 4.64 0.08  − 7.31 0.57  − 9.66 1.31  − 11.85 2.20  − 13.94 

 3.18  − 15.97 4.23  − 17.93 5.33  − 19.86 6.48  − 21.75 7.66  − 23.61 

n =100 0.00  − 2.95 0.05  − 4.66 0.36  − 6.16 0.82  − 7.57 1.38  − 8.92 

 1.99  − 10.23 2.64  − 11.50 3.33  − 12.75 4.04  − 13.97 4.78  − 15.18 

n =160 0.00  − 1.85 0.03  − 2.93 0.22  − 3.88 0.51  − 4.77 0.86  − 5.63 

 1.24  − 6.46 1.65  − 7.27 2.07  − 8.06 2.51  − 8.84 2.97  − 9.61 

n =250 0.00  − 1.19 0.02  − 1.88 0.14  − 2.50 0.33  − 3.07 0.55  − 3.62 

 0.79  − 4.16 1.05  − 4.68 1.32  − 5.19 1.60  − 5.70 1.89  − 6.20 
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Table 2b. Confidence Intervals for Q with Confidence Probability = 0.90 (continued) 

 x = 0 x = 1 x = 2 x = 3 x = 4 

 x = 5 x = 6 x = 7 x = 8 x = 9 

n = 400 0.00  − 0.75 0.01  − 1.18 0.09  − 1.57 0.20  − 1.93 0.34  − 2.27 

 0.49  − 2.61 0.66  − 2.94 0.82  − 3.26 1.00  − 3.58 1.18  − 3.89 

n = 630 0.00  − 0.47 0.01  − 0.75 0.06  − 1.00 0.13  − 1.23 0.22  − 1.45 

 0.31  − 1.66 0.42  − 1.87 0.52  − 2.08 0.63  − 2.28 0.75  − 2.48 

n = 1000 0.00  − 0.30 0.01  − 0.47 0.04  − 0.63 0.08  − 0.77 0.14  − 0.91 

 0.20  − 1.05 0.26  − 1.18 0.33  − 1.31 0.40  − 1.44 0.47  − 1.57 

n = sample size        x =number of invalid items in the sample 

The body of the table gives the confidence interval for Q in percent. 
 

Table 2c. Confidence Intervals for Q with Confidence Probability = 0.80 

 x = 0 x = 1 x = 2 x = 3 x = 4 

 x = 5 x = 6 x = 7 x = 8 x = 9 

n =10 0.00  − 20.57 1.05  − 33.68 5.45  − 44.96 11.58  − 55.17 18.76  − 64.58 

 26.73  − 73.27 35.42  − 81.24 44.83  − 88.42 55.04  − 94.55 66.32  − 98.95 

n =16 0.00  − 13.40 0.66  − 22.22 3.37  − 29.96 7.10  − 37.12 11.38  − 43.89 

 16.06  − 50.35 21.04  − 56.54 26.29  − 62.50 31.78  − 68.22 37.50  − 73.71 

n =25 0.00  − 8.80 0.42  − 14.69 2.15  − 19.91 4.49  − 24.80 7.17  − 29.47 

 10.06  − 33.97 13.12  − 38.33 16.32  − 42.58 19.62  − 46.73 23.03  − 50.80 

n =40 0.00  − 5.59 0.26  − 9.38 1.34  − 12.76 2.79  − 15.94 4.43  − 19.00 

 6.21  − 21.96 8.07  − 24.85 10.01  − 27.67 12.01  − 30.45 14.06  − 33.18 

n =63 0.00  − 3.59 0.17  − 6.03 0.85  − 8.23 1.76  − 10.30 2.80  − 12.29 

 3.91  − 14.23 5.08  − 16.12 6.29  − 17.98 7.54  − 19.81 8.81  − 21.61 

n =100 0.00  − 2.28 0.11  − 3.83 0.53  − 5.23 1.11  − 6.56 1.76  − 7.83 

 2.45  − 9.08 3.18  − 10.29 3.94  − 11.49 4.71  − 12.67 5.50  − 13.84 

n =160 0.00  − 1.43 0.07  − 2.41 0.33  − 3.29 0.69  − 4.13 1.09  − 4.93 

 1.53  − 5.72 1.98  − 6.49 2.45  − 7.25 2.93  − 7.99 3.42  − 8.73 

n =250 0.00  − 0.92 0.04  − 1.55 0.21  − 2.11 0.44  − 2.65 0.70  − 3.17 

 0.98  − 3.68 1.27  − 4.17 1.56  − 4.66 1.87  − 5.15 2.18  − 5.62 

n =400 0.00  − 0.57 0.03  − 0.97 0.13  − 1.33 0.28  − 1.66 0.44  − 1.99 

 0.61  − 2.31 0.79  − 2.62 0.98  − 2.93 1.17  − 3.23 1.36  − 3.53 

n =630 0.00  − 0.36 0.02  − 0.62 0.08  − 0.84 0.18  − 1.06 0.28  − 1.26 

 0.39  − 1.47 0.50  − 1.67 0.62  − 1.86 0.74  − 2.05 0.86  − 2.25 

n =1000 0.00  − 0.23 0.01  − 0.39 0.05  − 0.53 0.11  − 0.67 0.17  − 0.80 

 0.24  − 0.93 0.32  − 1.05 0.39  − 1.17 0.47  − 1.30 0.54  − 1.42 

n = sample size        x =number of invalid items in the sample 

The body of the table gives the confidence interval for Q in percent 

 

If no invalid item is found in the sample this 

is not a proof that there are no invalid items 

in the lot. The maximal proportion of invalid 

items in the lot is given by the upper bound 

of the confidence interval for x = 0. 

Of course, x/n, the observed proportion of 

invalid items in the sample, is within the 

confidence interval. However, it is not in the 

centre of the confidence interval, but instead 

closer to its lower bound. The reason for this 

is that the true proportion of invalid items in 

the lot cannot be less than zero. 
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In quality control typically producer’s risk 

and customer’s risk are communicated. But 

in statistics there is a long tradition to give 

for confidence intervals the probability for 

correctness instead of risks. Further, with 

confidence intervals, the probability for 

overestimation and the probability for 

underestimation are usually the same. The 

relationship between confidence probability 

and error probability is simply: 

 

Confidence probability + error probability = 1.0 

Confidence probability = 1.0 – (αcustomer + αproducer) 

 

In literature several formulas to compute 

confidence intervals for proportions are 

published, e.g. Altman et al. (2000), Gaus 

and Muche (2017). However, nearly all of 

these formulas are not qualified for small 

risks, i.e. for small CAQLs. The procedure 

for manual computation of confidence 

intervals proposed by Clopper and Pearson 

(1934) is graphical, or needs a very detailed 

F-Table which is only computationally 

available. 

If αcustomer ≠ αproducer we propose to compute 

the confidence interval twice: One 

confidence interval with confidence 

probability (1 – 2αcustomer) and a second 

confidence interval with confidence 

probability (1 – 2αproducer). Then the lower 

bound of the confidence interval computed 

with αproducer is used for rejection of the lot, 

the upper bound of the confidence interval 

computed with αcustomer is used for 

acceptance (Figure 1). 

The smaller the confidence interval the 

easier a decision can be made. The larger the 

sample size and the larger both αcustomer and 

αproducer, the smaller the confidence interval. 

Table 2 gives confidence intervals for Q for 

various sample sizes and various numbers of 

invalid items in the sample. 

The main advantage of a decision by 

confidence interval is – compared to the 

simple procedure described in Section 4 – 

that a decision with controlled αcustomer and 

controlled αproducer is possible. However, 

often CAQL will be within the confidence 

interval and a decision with controlled risks 

is not possible. But a confidence interval 

gives at least a feeling of how likely it is that 

the decision is correct. If CAQL is within the 

confidence interval, then the sample size can 

be enlarged (see Section 8) or a decision 

without controlled customer’s risk or without 

controlled producer’s risk is always possible 

(see Section 4). Another advantage of 

confidence intervals is that it is possible that 

the customer and the producer make a 

CAQL, or instead a common AQL, their 

own acceptable quality limits 

(AQLcustomer ≠ AQLproducer) and use the same 

risks (αcustomer = αproducer) or different risks 

(αcustomer ≠ αproducer). 

 

6. Lot acceptance/rejection with a 

statistical test 
 

A statistical test is a formal decision founded 

on observed data, Altman (1991), Bland 

(2000), and Ilakovac (2009). It is based on 

the so called “null hypothesis”, i.e. the effect 

investigated is null or non-existent. The 

exact antithesis to the null hypothesis is 

called the “alternative”. All possibilities 

have to be covered by either the null 

hypothesis or the alternative. 

A null hypothesis and its alternative may be 

one-sided or two-sided. In a one-sided 

hypothesis the alternative has only one 

predisposed direction. A two-sided 

hypothesis allows the alternative to 

demonstrate differences in one or the other 

direction. Assume that S is a sample and P is 

the reference population. The question is, if 

the sample stems from the reference 

population or not. If a sample is compared 

with a population then: 
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Two-sided hypothesis:    Null hypothesis:  S = P;   Alternative:  S ≠ P 

One-sided hypothesis:     Null hypothesis:  S ≤ P;   Alternative:  S > P 

or 

                                         Null hypothesis:  S  P;   Alternative:  S < P 

 

The test computes the probability that the 

observed data – or more extreme data – 

originate from the null hypothesis with a 

purely random process. If this probability 

(p-value) is less than or equal to an 

established probability, called “level of 

significance”, then the test is significant, 

otherwise the test is non-significant. 

The standard procedure (Montgomery, 2013; 

Kreyszig, 2011; Uhlmann, 1982; Woodall, 

1997; ISO 2859, 2011; ANSI/ASQ Z1.4, 

2008; and MIL-STD-105E, 1989) uses a 

statistical test for a one-sided hypothesis. But 

we think that in quality control the 

hypothesis is two-sided: Null hypothesis: 

Q = CAQL, alternative: Q ≠ CAQL. 

According to the null hypothesis we expect 

E(x) = nCAQL invalid items in the sample. 

The test has to find out if x deviates 

significantly from E(x). If the test is 

significant and Q > CAQL then we decide to 

reject the lot, if the test is significant and 

Q < CAQL then we decide to accept the lot. 

“Significant” means that the deviation of the 

observed from the expected number of 

invalid items in the sample cannot be by 

chance. More precisely, if the null 

hypothesis is actually true then the 

probability that the observed number of 

invalid items in the sample deviates only at 

random from the expected number is smaller 

than αcustomer or αproducer. 

Every decision can be correct or incorrect. 

The decision taken by a statistical test has 

the possibilities described in Table 3. 

 

 

Table 3. Possibilities of a Decision Based on a Statistical Test 
 In reality null hypothesis 

is correct, S = P 

In reality the alternative is correct, 

S > P  or  S < P 

Test is significant Type I mistake, α-risk Correct decision 

Test is not-significant Correct decision  Type II mistake, β-risk 

The outcome of a statistical test comparing a sample S with a population P with a two-sided hypothesis is 

described by a fourfold scheme. Traditionally wrong decisions are called type I mistakes and type II 

mistakes. The probability for a type I mistake is α-risk, the probability for a type II mistake a β-risk. 

 

To prevent misunderstanding we must point 

out that if a test is significant, then the 

probability that its decision is incorrect is not 

the α-risk, and if a test is not-significant, 

then the probability that its decision is 

incorrect is not the β-risk. This becomes 

clear by using conditional probabilities 

(event  condition). 

 

prob (test significant  null hypothesis is actually correct) = α-risk 

prob (null hypothesis is actually correct  test is significant) is not known but typically 

small. 

prob (test not-significant  alternative is actually correct) = β-risk 

prob (alternative is actually correct  test is not-significant) is not known. 
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A statistical test controls the α-risk directly. 

If a statistical test is significant we can 

decide to reject the null hypothesis and to 

accept the alternative. 

The power of a statistical test is the 

probability to achieve significance if the 

alternative is actually correct. Power = (1 –

 β-risk). The power depends on several 

influences, but mainly on the sample size 

and the actual (but unknown) effect size, i.e. 

the actual deviation from the null hypothesis. 

In quality control the effect size is the 

deviation of Q from CAQL. For computation 

of the power, the effect size and n have to be 

specified among other specifications 

(McHugh 2008). 

Non-significance can have two reasons: (1st) 

the null hypothesis is actually true or, (2nd) 

the power of the test was too low for the 

actual effect size and the given sample size. 

Thus only a significant result gives a 

“statistical proof” with a controlled risk. 

Assume a lot with Q = CAQL and that E(x) 

is sufficient large. From this population 

many random samples – say 100, each with 

sample size n – are drawn. From each of 

these samples the number of invalid items x 

is determined. We expect for half of the 

samples x < E(x) and for the other half 

x > E(x). 

This experiment in thought demonstrates that 

for Q = AQL no substantiated decision on 

acceptance/rejection of the lot is possible. 

The more Q approaches CAQL the more this 

decision is dominated by randomness. 

 

7. Proposal for a statistical test for 

lot acceptance/rejection 
 

A basic rule of statistics is that there is no 

statistical test without descriptive statistics. 

Hence, descriptive statistics is the first part, 

and a statistical test the second part of data 

analysis. First we compare x with E(x). If 

x > E(x) then the customer will tend to reject 

the lot. If x < E(x) then the producer will 

tend to accept the lot. The statistical test 

decides if the difference between expected 

and observed frequencies may be due to 

chance (test is not significant) or not (test is 

significant). 

If x > E(x) and the test is significant, then 

the lot is rejected. If x < E(x) and the test is 

significant, then the lot is accepted. If the 

test is not significant then the deviation of x 

from E(x) may be due to randomness and a 

decision is insecure. 

There are three mathematical methods to 

compute the probability to observe x 

occurrences for a given sample size n and a 

given probability for a simple event (Table 

4). 

 

Table 4. Three mathematical methods 

Method Computational Work Prerequisites 

Poisson distribution small 
CAQL is small, i.e. CAQL ≤ 0.05 

20 ≤ n << N, i.e. 20 ≤ n ≤ 0.1N 

Binomial Distribution medium n << N, i.e. n ≤ 0.1N 

Hypergeometric 

Distribution 
large none 

 

For all examples we used the Poisson 

distribution to enable highly interested 

readers to re-compute the examples with a 

simple, hand-held pocket computer. But 

there is no problem in using the other 

methods with a programmed computer. 

The probability that a single item of a 

sample is invalid (simple event) is Q in this 

context. However, Q is usually unknown. 

Acceptance/rejection sampling wants to find 

out if Q > CAQL or if Q ≤ CAQL. Thus, Q 

is replaced by CAQL.  



 

810                                           W. Gaus, R. Muche, B. Mayer 

Adapted to quality control the formula of the 

Poisson distribution is: 

prob (x) = (n  CAQL)x  e-(n  CAQL) / x! 

where x! is defined as 1234 … x, and 

(n  CAQL) is the expected number of 

invalid items in the sample E(x). 

There is no specific statistical test procedure 

for the problem discussed here. But it is 

rather simple to compute the probability that 

the observed data – or more extreme data – 

originate from the null hypothesis with a 

purely random process. Tables 5(a, b) 

describes the procedure to compute the 

customer’s risk and the producer’s risk. 

 

Table 5a. Example for Computation of the Customer’s Risk and the Producer’s Risk 

 Step 2 Step 3 Step 4 Step 5 Step 6 

 Compute p(x) Cumulate 1–p(≤(x-1)) x’ Two-Sided 

x = 0 p(0)=0.082 p(≤0)=0.082  5 p(≤0)=0.190 

x = 1 p(1)=0.205 p(≤1)=0.287  4 p(≤1)=0.529 

x = 2 p(2)=0.257 p(≤2)=0.544  3 p(≤2)=1.000 

x = 3 p(3)=0.214 p(≤3)=0.758 p(3)=0.456 2 p(3)=1.000 

x = 4 p(4)=0.134 p(≤4)=0.892 p(4)=0.242 1 p(4)=0.529 

x = 5 p(5)=0.067 p(≤5)=0.959 p(5)=0.108 0 p(5)=0.190 

x = 6 p(6)=0.028 p(≤6)=0.987 p(6)=0.041 - p(6)=0.041 

x = 7 p(7)=0.010 p(≤7)=0.997 p(7)=0.013 - p(7)=0.013 

x = 8 p(8)=0.002 p(≤8)=0.999 p(8)=0.003 - p(8)=0.003 

x = 9 p(9)=0.001 p(≤9)=1.000 p(8)=0.001 - p(9)=0.001 

Assume that E(x) = 2.5 invalid items are expected for the sample. For x < E(x) the customer’s risk is 

computed and for x > E(x) the producer’s risk (step 6), both for different numbers of invalid items in the 

sample (x). For explanation of the steps of computation see separate box. 

This table is only valid for E(x)=2.5, for other values of E(x) see Table 6. 

For x > 9 the probability is negligible. The differences in results compared to Table 6 are due to reduced 

accuracy when calculating with hand held computer. 

Reading examples: For E(x)=2.5 and x=0 and the lot is accepted then customer’s risk is 0.19. For 

E(x)=2.5 and x=6 and the lot is rejected then producer’s risk is 0.041 

 

Table 5b. Steps of Computation for the Results of Table 5a 

Step 1 Check if the prerequisites for Poisson distribution are fulfilled: CAQL ≤ 0.05 AND 

20 ≤ n ≤ 0.1N. If not then replace in step 2 Poisson distribution by binomial or 

hypergeometric distribution as appropriate. For the example CAQL = 0.025, n = 100, and 

therefore E(x) = 2.5 is the Poisson distribution valid and used. 

Step 2: Compute with the Poisson (or binomial or hypergeometric) distribution for E(x) = 2.5 the 

probability that x invalid items are observed in the sample, i.e. p(x). 

Step 3: Cumulate the probabilities. p(≤x) = p(x) + p(x‒1) + p(x‒2) + etc. until + p(0) 

For x<E(x) this is the one-sided customer’s risk. 

Step 4: For x>E(x) compute the probabilities p(x) = 1.0 – p(≤(x‒1)) 

For x>E(x) this is the one-sided producer’s risk. 
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Table 5b. Steps of Computation for the Results of Table 5a (continued) 

Step 5: Determine x’ which is opposite to x on the other side of E(x). 

Example 1: x = 1 is 1.5 below E(x) = 2.5. Thus, x’ is 1.5 above E(x), it is x’ = 4. 

Example 2: x = 4 is 1.5 over E(x) = 2.5. Thus, x’ is 1.5 below E(x), it is x’ = 1. 

Example 3: x = 5 is 2.5 over E(x) = 2.5. x’ is 2.5 below E(x), it is x’ = 0. 

Example 4: For x = 6 the opposite x’ would be ‒1. This is not existent. 

Step 6: Compute the two-sided probabilities. 

For x<E(x) add p(≤x) + p(x’). In particular: 

For x=0:  p(≤0) + p(5)= 0.082 + 0.108= 0.190 

For x=1:  p(≤1) + p(4)= 0.287 + 0.242= 0.529 

For x=2:  p(≤2) + p(3)= 0.544 + 0.456= 1.000 

For x > E(x) add p(x) + p(≤x’). In particular: 

For x=3:  p(3) + p(≤2)= 0.456 + 0.544= 1.000 

For x=4:  p(4) + p(≤1)= 0.242 + 0.287= 0.529 

For x=5:  p(5) + p(=0)= 0.108 + 0.082= 0.190 

If x’ does not exist then the addition is not applicable. In particular: 

For x=6:  p(6)= 0.041= 0.041 

For x=7:  p(7)= 0.013= 0.013 

etc. 

This column gives for x<E(x) the two-sided customer’s risk, and for x>E(x) the two-sided 

producer’s risk. 

 

 

Table 6 gives the risk probabilities for 

various situations. Examples: For 

αcustomer = 0.2 a minimal E(x) = 2.5 is 

necessary, for αcustomer = 0.1 a minimal 

E(x) = 3.5, and for αcustomer = 0.05 a minimal 

E(x) = 4.5, otherwise these customer’s risks 

are not achieved even with x = 0. 

 

Table 6. The Customer’s and the Producer’s Risk for Expected and Observed Number of 

Invalid Items in the Sample 

E(x) = 0.5 

 prob (0) = 1.000,  prob (1) = 1.000,  prob (2) = 0.090,  prob (3) = 0.014, 

 prob (4) = 0.002 

E(x) = 1.5 

 prob (0) = 0.414,  prob (≤1) = 1.000,  prob (2) = 1.000,  prob (3) = 0.414, 

 prob (4) = 0.066,  prob (5) = 0.019,  prob (6) = 0.004 

E(x) = 2.5 

 prob ( 0 ) = 0.191,  prob (≤1) = 0.530,  prob (≤2) = 1.000,  prob (3) = 1.000, 

 prob (4) = 0.530,  prob (5) = 0.191,  prob (6) = 0.042,  prob (7) = 0.014, 

 prob (8) = 0.004 

E(x) = 3.5 

 prob ( 0) = 0.095,  prob (≤1) = 0.278,  prob (≤2) = 0.595,  prob (≤3) = 1.000, 

 prob (4) = 1.000,  prob (5) = 0.595,  prob (6) = 0.278,  prob (7) = 0.095, 

 prob (8) = 0.027,  prob (9) = 0.010,  prob (10) = 0.003 

E(x) = 4.5 

 prob ( 0) = 0.051,   prob (≤1) = 0.148,  prob (≤2) = 0.343,  prob (≤3) = 0.639, 

 prob (≤4) = 1.000,  prob (5) = 1.000,  prob (6) = 0.639,   prob (7) = 0.343, 

 prob (8) = 0.148,  prob (9) = 0.051,  prob (10) = 0.017,  prob (11) = 0.007, 

 prob (12) = 0.002 
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Table 6. The Customer’s and the Producer’s Risk for Expected and Observed Number of 

Invalid Items in the Sample (continued) 

E(x) = 5.5 

  prob ( 0) = 0.029,   prob (≤1) = 0.080,   prob (≤2) = 0.194,   prob (≤3) = 0.392, 

  prob (≤4) = 0.671,   prob (≤5) = 1.000,   prob (6) = 1.000,   prob (7) = 0.671, 

  prob (8) = 0.392,   prob (9) = 0.194,   prob (10) = 0.080,  prob (11) = 0.029, 

 prob (12) = 0.011,  prob (13) = 0.004,  prob (14) = 0.002,  prob (15) = 0.001 

E(x) = 6.5 

 prob ( 0) = 0.018,   prob (≤1) = 0.045,   prob (≤2) = 0.110,   prob (≤3) = 0.234, 

 prob (≤4) = 0.432,  prob (≤5) = 0.696,  prob (≤6) = 1.000,   prob (7) = 1.000, 

 prob (8) = 0.696,   prob (9) = 0.432,   prob (10) = 0.234,  prob (11) = 0.110, 

 prob (12) = 0.045,  prob (13) = 0.018,  prob (14) = 0.007,  prob (15) = 0.003 

E(x) = 8.5 

 prob ( 0) = 0.007,   prob (≤1) = 0.016,  prob (≤2) = 0.037,   prob (≤3) = 0.082, 

 prob (≤4) = 0.165,   prob (≤5) = 0.301,   prob (≤6) = 0.493,   prob (≤7) = 0.733, 

 prob (≤8) = 1.000,   prob (9) = 1.000,   prob (10) = 0.733,  prob (11) = 0.493, 

 prob (12) = 0.301,  prob (13) = 0.165,  prob (14) = 0.082,  prob (15) = 0.037, 

 prob (16) = 0.016,  prob (17) = 0.007,  prob (18) = 0.003,  prob (19) = 0.001 

Reading examples: 

If E(x) = 5.5, x = 1 and the lot is accepted then customer’s risk is 0.080. 

If E(x) = 6.5, x = 3 and the lot is accepted then customer’s risk is 0.234. 

If E(x) = 4.5, x = 9 and the lot is rejected then producer’s risk is 0.051. 

 

If a sample is investigated and it turns out 

that the number of invalid items is already so 

large that the decision to reject the lot is 

possible, then further investigation of the 

sample is superfluous. Such an early halt due 

to many invalid items during investigating 

the sample is called “curtailment of a 

sample”. For example, if E(x) is 2.5 and 

αproducer is 0.20 then according to Table 6 the 

lot is rejected if the number of invalid items 

in the sample is x  5. If the sample is partly 

investigated and already 5 invalid items are 

found, then the lot is already rejected and 

further investigation of the sample can be 

saved. 

 

8. Multiple steps sampling plans 
 

As already pointed out, statistical methods – 

whether confidence interval or statistical test 

– are unable to decide (given a reasonable 

sample size) with controlled αCustomer and 

controlled αProducer if Q  CAQL. The only 

two solutions to overcome this problem are 

(i) to enlarge sample size n or (ii) to accept 

increased αcustomer and αproducer. 

The customer and the producer may agree to 

increase sample size n if a decision with 

controlled αcustomer and αproducer is not 

possible. Such an agreement should be 

established beforehand in the sampling plan. 

A multiple steps sampling plan should fix 

the maximal number of steps and the sample 

size of each step in addition to the usual 

stipulations. For evaluation of a step all 

previous samples are pooled. 

Example: The customer and the producer 

agree on the following items of the sampling 

plan: CAQL = 0.05, αCustomer = 0.10, 

αproducer = 0.10 and sample size n1 = 110. 

Further, they agree that if a decision with 

these conditions is not possible then the 

sample size is increased by 100 to n2 = 210. 

Thus, E(x) is increased from 5.5 to 10.5. 

In most productions such a two-step 

procedure will be reasonable. However, a 

three or more step procedure is also possible. 

If a decision with controlled risks is not 

possible after one step, then the sample size 

is increased for the next step. 

Sample size of the first step may be rather 

small with e.g. E(x) = 2.5 or 3.5. In the case 
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that Q is rather different from CAQL then a 

decision is already possible by the first step. 

For the last step of a multiple sampling plan, 

we recommend giving up controlling αcustomer 

and αproducer, and using the simple procedure 

described in Section 4 in order to come to a 

decision with a reasonable sample size. 

In a multiple sampling plan more than one 

test is performed on the same topic. 

According to formal statistics the p-value 

computed for a single test is too small and 

has to be adjusted for multiple testing, for 

example, with the Bonferroni-Holm-

procedure (Holm, 1979). But all such 

adjustments give a trend towards not 

significant. In quality control a decision is 

wanted. Therefore, we would not worry 

about waiving the adjustment although it is 

formally necessary. 

 

9. Conclusion 
 

Quality control is a serious matter (Zimon, 

2017). In recent years several papers have 

been published to adapt the standard 

procedure of acceptance sampling with an 

attribute to specific situations. Kasprikova et 

al. (2015) investigated if costs can be saved 

by inspection of quantitative variables 

additionally to the inspection of an attribute. 

Fallanezhad (2015) analysed the 

consequences of inspection errors. Aslam et 

al. (2015) compared for the attribute 

“lifetime sufficient yes/no” an inspection one 

item after the other with an inspection of 

several items simultaneously. Rao et al. 

(2013) analyzed mean lifetime of the 

products with truncated life time tests. Hsu 

et al. (2012) presented an economic model 

for a sequentially sampling up to two 

subsequent samples. Iacobini (2000) gave a 

cost analysis approach for lot-by-lot 

sampling inspection. None of these papers 

discuss the principle of the standard 

procedure. 

Inspection of a sample with controlled 

αcustomer and αproducer has three possible 

results: (1st) lot is accepted, (2nd) lot is 

rejected, and (3rd) a decision is not possible 

with the given sample size n. Of course, the 

customer and the producer may take a 

decision anyway, but they should be aware 

of uncontrolled risks. 

The standard procedure for 

acceptance/rejection sampling for attributes 

(Montgomery 2013; Kreyszig, 2011; 

Uhlmann, 1982; Woodall, 1997; ISO 2859, 

2011; ANSI/ASQ, 2008; and MIL-STD, 

1989) is widely used. It is based on an 

operation characteristic, and delivers sample 

size n and acceptance number a. If x > a, 

then the lot is rejected, otherwise it is 

accepted. 

The standard procedure needs two different 

acceptable quality limits – AQL for the 

producer and RQL for the customer – with 

the relationship AQL < RQL. This is 

necessary to compute the operation 

characteristic respective to compute the 

power of the test. The larger the difference 

RQL – AQL the smaller the sample size may 

be. We think that the two different 

acceptable quality levels and their necessary 

relationship AQL < RQL are illogical, or at 

least difficult to explain to practitioners. 

From the statistical point of view the 

standard procedure is a test with a one-sided 

hypothesis (null hypothesis: Q ≤ AQL, 

alternative Q > AQL). If the test is 

significant (x > a) then Q > AQL with 

controlled α, and the lot is correctly rejected. 

If the test is not significant (x ≤ a) then the 

lot is accepted. But a non-significant test is 

not a proof that the null hypothesis is correct. 

A non-significant test guarantees only that 

Q ≤ RCL with controlled β. If 

AQL ≤ Q < RQL this is called an 

“indifferent” lot by Kreyszig (2011). Then 

the test is often not significant with 

uncontrolled β and acceptance of the lot is 

not justified. “Absence of evidence is not 

evidence of absence” (Altman and Bland, 

1995). Thus, the standard procedure results 

in acceptance of the lot even though a 

decision with controlled customer’s risk is 

impossible due to an insufficient sample size 
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for the actual effect size. We feel that this is 

unfair for the customer. 

The standard procedure ignores that if 

AQL ≤ Q < RQL or Q  CAQL, 

respectively, then a decision with controlled 

risks needs a very large sample size up to the 

inspection of the entire lot. This holds in 

general, and is not a matter of a certain 

statistical procedure. We are convinced that 

statisticians should be honest and should not 

use insufficient information to accept a lot as 

it is done by the standard procedure. 

In contrast to the standard procedure we (1st) 

enable an acceptable quality limit common 

for the customer and the producer, (2nd) give 

a first orientation on sample size by E(x), 

(3rd) offer a simple but unbiased procedure 

for acceptance/rejection of the lot, (4th) 

illustrate the situation by a confidence 

interval for Q, (5th) propose a statistical test 

with a two-sided hypothesis, and (6th) make 

a decision only if the test is significant. If 

sample size is insufficient to prove the actual 

effect size we acknowledge that a decision 

with controlled αcustomer or αproducer is 

impossible. It is up to the customer and the 

producer to agree beforehand to increase 

sample size in a multiple steps sampling 

plan, or to take a decision without controlled 

αcustomer or αproducer. 
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Appendix: 

 
Symbols concerning the lot (population) are upper case letters. Symbols concerning the sample 

are lower case letters. Probabilities are written with Greek letters. 

 

N Number of items in the lot = size of population  

X Number of invalid items in the lot (usually unknown), 0 ≤ X ≤ N 

Q Proportion of invalid items in the lot (usually unknown), Q = X / N 

AQL Acceptable quality limit or accepted quality level. This variable is used in the standard 

procedure. It is the maximal proportion of invalid items in the lot accepted by the 

producer. It has to be established and defined and is therefore known. 0 < AQL < 1 

RQL Rejectable quality level. This variable is used in the standard procedure. It is the 

maximal proportion of invalid items in the lot accepted by the customer. It has to be 

established and defined and is therefore known. 0 < AQL < RQL < 1 

CAQL Common acceptable quality limit. The maximal proportion of invalid items in the lot 

accepted by the producer as well as by the customer. It has to be established and defined 

and is therefore known. 0 < CAQL < 1 

 

n Number of items in the sample = sample size, 0 < n < N 

x Number of invalid items in the sample. In statistical terms is x an observed frequency.  

0 ≤ x ≤ n 

a Acceptance number. This variable is used in the standard procedure. If the number of 

invalid items in the sample is less than or equal to this number (x ≤ a) then the lot is 

accepted, if x > a then the lot is rejected. 

E(x) Expected number of invalid items in the sample. It relates to the sample and should 

therefore be written in lower case letters. But in statistics E for “expected” is written 

traditionally with upper case letter. 

 

α In general the probability that a statistical test is falsely significant. In the standard 

procedure it is the producer’s risk. 

β In general the probability that a statistical test is falsely not significant. In the standard 

procedure it is the customer’s risk. 

The customer’s risk is the probability that a lot is accepted although Q > CAQL. (In the standard 

procedure Q > RQL) Customer’s risk = prob (lot is accepted  Q > AQL). In statistical 

shorthand it is the p-value of the test for the side Q > CAQL. 

αcustomer Maximal risk accepted by the customer. Often αcustomer = 5%, 10% or 20% is selected. In 

statistical terms is αcustomer the level of significance for the side Q > CAQL. 

The producer’s risk is the probability that a lot is rejected although Q < CAQL. (In the standard 

procedure Q ≤ AQL) Producer’s risk = prob (lot is rejected  Q < AQL). In statistical 

shorthand it is the p-value of the test for the side Q < CAQL. 

αproducer The maximal risk accepted by the producer. Often αproducer = 5%, 10% or 20% is 

selected. In statistical terms is αproducer the level of significance for the side 

Q < CAQL. 

 


