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SIX SIGMA-BASED RANGE AND STANDARD 

DEVIATION CHARTS FOR CONTINUOUS 

QUALITY IMPROVEMENT 

 
Abstract: Control charts for range (R-chart) and standard 

deviation (S-chart) are commonly used charts along with X-bar 

control chart for variables.  One of the major challenges in 

these charts is the use of appropriate estimators of the unknown 

population parameters involved in the control limits. In this 

paper, first a detailed review on the classical charts for 

dispersion, R-chart and S-chart, is presented and then by 

applying the concept of Six Sigma quality characteristics, new 

set of Six Sigma-based R- and S-charts are developed.  The 

motivation of the proposed approach is due to the fact that 

“specifications refer to the deviations that are permissible from 

the target and the units produced from a well-behaved process 

will match the target and standard deviation associated with its 

specifications”. Accordingly, unlike the traditional charts, in 

this new approach, the unknown population standard deviation 

related to range and standard deviation are derived from 

specification using the perspective of Six Sigma. Procedures for 

obtaining control limits of the proposed Six Sigma-based R-and 

S-chart are given.  The average run length values for the 

proposed new charts are also obtained for different in-control 

and out-of control shift values. It is discussed that due to various 

reasons a process may maintain certain sigma quality level at a 

point of time that may be in terms of number of sigma. Since the 

goal of Six Sigma is of 3.4 defects per million opportunities, it is 

recommended to keep monitoring the process in terms of sigma 

quality level by using  the improved control limits for the 

purpose of  continuous quality improvement every time till the 

goal is achieved. The proposed charts are illustrated with 

appropriate numerical examples for better understanding. 

Keywords: average run length, defects per million 

opportunities, Six Sigma-based R- and S-charts, Six Sigma 

quality, traditional R- and S-charts 

 

 

1. Introduction1 
 

In today's customer-oriented competitive 

marketplace, manufacturing firms and 
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service providers are expected to meet the 

changing needs of customers continuously. 

In fact, the presence of huge product variants 

and the growing needs of customers force 

organizations to come out with robust, high 

quality and cost-effective products. In order 

to improve quality of processes and 
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products, and hence to achieve business 

excellence, organizations adopt Total 

Quality Management (TQM) methodology. 

Since contribution of quality is the key to 

this achievement, the focus of any quality 

improvement tools and techniques is 

expected to be about variability reduction, 

cost savings and hence meeting the goals 

successfully (Andersson et al., 2006). 

Asilahijani et al. (2010) pointed out that 

higher variation in a quality characteristic 

always results in undesirable outcomes with 

regard to cost of rework or scrap, customer 

dissatisfaction and poor functional activities. 

Therefore, variance reduction in any key 

product/process quality characteristic plays a 

major role in quality improvement programs.  

Six Sigma quality program is one of the 

means to achieve the benefits of TQM 

mainly through reduced variability and 

increased output levels.  The purpose of Six 

Sigma quality program is to achieve 

organizational goals through systematic 

application of statistics-based tools and 

techniques.  

Statistical Process Control (SPC) is an 

effective tool for achieving quality 

improvement.  Controlling and monitoring 

of processes/products statistically are the key 

aspects of any SPC activity. Statistical 

Quality Control (SQC) charts - Shewhart 

control charts for attributes and variables- 

are commonly used for this purpose. In fact, 

the use and nature of control charts are 

different for variables and attributes. While 

X-bar Chart is useful in detecting any shift in 

the mean (an out-of-control point), it is 

always preferable to check whether there is 

any out-of-control state in the dispersion as 

well. R- and S-charts are important statistical 

process control (SPC) charts that can help to 

find if there is any high level of dispersion in 

the data that needs attention. This is essential 

because every sub-sample contains n  

observations and there is a possibility that 

the difference between the maximum and 

minimum observations is high or the spread 

of the observations is high indicating an out-

of-control situation. Therefore, while R-

Chart is useful in checking whether a process 

is under statistical control with regard to 

range, S-chart is useful in knowing whether 

the process is under control with regard to 

spread of the data.  It may be noted that 

range and spread give an indication over the 

quantum of variability in the process data. 

Though there exist a number of control 

charts for different process situations as 

proposed by researchers and practitioners, 

developments in use and application of 

control charts keep evolving over years 

mainly due to industrial automation and 

requirements in information systems and 

technology. Most of these developments are 

based on the use of appropriate estimators 

(such as robust and efficient) for unknown 

parameters involved in the construction of 

control charts.  Also, high quality processes, 

in fact, warrants more sophisticated and but 

still efficient control charts and tools for 

process monitoring (Box and Narasimhan, 

2010). This poses a major challenge to Six 

Sigma quality practitioners to decide on the 

type of control chart that is more appropriate 

for the process/product being monitored.  

Accordingly, effective use of the existing 

control chart(s) or the introduction of new 

chart(s) is always appreciated by Six Sigma 

practitioners who often deal with high 

quality processes and are in search of easy-

to- use and advanced quality control charts.  

According to Hsu et al. (2009), application 

of traditional control charting and reliability 

methods may not yield significant results 

when they are used for a highly reliable 

process and products. Therefore, there exists 

a need for the development of sophisticated 

control charts that can help to continually 

improve and ensure highly reliable and 

quality processes and products. It may be 

noted that, variability reduction being the 

key focus of Six Sigma quality program, 

maintaining a process close to the target by 

means of reducing process variation is an 

important task of any organization aiming 

for high quality processes and products.  
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A controlled process is naturally meeting the 

set specifications (target and specification 

limits) resulting in minimum loss to both 

producer and consumer. The distribution of 

units of a well behaved process always 

matches the target of the specification limits 

and hence the standard deviation. Keeping 

this in mind, a new method of fixing a Six 

Sigma Quality-based specification for 

quality characteristics was suggested by 

Ravichandran (2006). In this paper, we 

propose new control charts for dispersion 

(Six Sigma-based R- and S-charts) by 

estimating the standard deviation using the 

process/product specification from the 

perspective of Six Sigma quality of 3.4 

defects per million opportunities (DPMO).  

The process under this quality level may go 

out-of-control (either below lower control 

limit (LCL) or above upper control limit 

(UCL)) with probability 0.0000068 only due 

to higher level of range/spread among the 

observations, whereas the process under 

traditional R- and S-charts may go out-of-

control with probability 0.0027 leading to 

1349.97 DPMO. The proposed charts also 

overcome the problems faced in the 

application of traditional charts where 

estimation of unknown parameters for use in 

the development control limits is a major 

concern. In addition, we show how to 

determine the current sigma level of the 

process being monitored so as to decide if 

further (and how much) improvement is 

required.  

 

2. Literature Review 
 

As discussed in the introduction section, 

there has been a growing interest in 

developing control charts and their 

applications depending upon the nature of 

processes and products. There are many 

recent studies made on such advanced 

control charts related to different areas of 

interest. In their work, Gadre and Rattihalli 

(2004) combined Shewart X-bar chart and a 

group runs chart to propose a synthetic 

control chart called group runs control chart 

that can detect small shifts in the process 

mean. Hsu et al. (2009) considered a two-

stage t-chart controlling procedure for 

reliability monitoring and performance 

measuring of an exponential failure process 

with high reliability. Hassan et al. (2010) 

examined the effective use of SPC charting 

methodology for controlling market risks in 

case of systematic trading and investment.  

Ryan and Woodall (2010) studied the 

efficiency of various cumulative sum 

(CUSUM) and exponentially weighted 

moving average (EWMA) control charts 

when data from a process with Poisson count 

are used with varying sample sizes.  

Ryu et al. (2010), observed the necessacity 

of optimally designing a CUSUM chart, 

particularly when the size of the mean shift 

is assumed unknown. Reynolds and Lou 

(2010) pointed out that the traditional X-bar 

chart is not effective in detecting small shifts 

in the mean of a normal process.  It is further 

observed that though CUSUM charts and 

EWMA charts are very effective for 

detecting small shifts in the process mean, 

they are not able detect the presence of  large 

shifts.  According to Reynolds and Lou 

(2010), since size of the shift in the process 

mean is usually unknown, they proposed a 

chart that it is able to effectively detect a 

wide range of shift sizes.  Zhu and Lin 

(2010), worked on the problem of 

monitoring the slopes of linear profiles using 

the Shewhart-type 2
T chart. Schoonhoven et 

al. (2011) studied control charts using 

different estimators of standard deviation 

then assessed the impact of those estimators 

on implementation. Lee (2011) proposed 

adaptive R-charts by extending the features 

of adaptive control charts to the traditional 

R-chart with variable parameters.  It is 

noticed that such chart can improve the 

efficiency of signaling high process 

variation. Recently, Jones et al. (2014) 

reviewed the aspects of collection and 

analysis of data for use in process 

improvement and control charting. While 

presenting a good review of a number of 

papers published in this area, Jones et al., 
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(2014) discussed about the importance of 

using good set of data for estimation of the 

unknown parameters that are used in control 

charts. 

It is interesting to note that most of these 

charts face problems in estimating the 

unknown parameters of interest since 

parametric estimation significantly 

influences the efficiency of the control chart 

in detecting signals. In case of the commonly 

used X-bar chart, the average range is used, 

at times, in the construction control limits 

when population standard deviation is 

unknown. Schoonhoven et al. (2009) 

considered five unbiased estimators (pooled 

sample standard deviation, mean sample 

standard deviation,  mean sample range, 

Gini’s mean sample differences, mean 

sample inter-quartile range) of population 

standard deviation and studied various 

design schemes when there is a shift in the 

process mean from the population mean. 

Two of these estimators involve average 

range and average standard deviation as 

well. Clearly, the problem still remains open 

as there can be better estimators for the 

unknown population standard deviation. In 

fact this aspect has motivated the author for 

the present work. 

Radhakrishnan and Balamurugan, (2011a, 

2011b) studied the case of constructing 

control charts separately for range and 

standard deviation with the Six Sigma 

initiatives taking into account the standard 

deviation is determined in terms of known 

process tolerance and process capability 

index. However, in SPC applications, it is 

advisable to determine the capability of the 

process after ensuring that the process is 

under control. Using the concept of Six 

Sigma Quality characteristics, Ravichandran 

(2016) developed a Six Sigma control chart 

for variable (X-bar chart) that can be applied 

by organizations to achieve higher quality 

levels. In our work, we start with the 

following information related to 

specification limits and control limits. While 

specifications refer to the deviations that are 

permissible from the target, or the end 

product that is aimed, control limits are 

based upon past performance. In fact, the 

limits of variation arising from a process are 

referred to as control limits when the process 

is under statistical control. 

The remainder of the paper is organized as 

follows. Section 3 discusses the aspects of 

Phase I and Phase II control charts. In 

Section 4, the features of traditional R- and S 

control charts are reviewed and the 

construction of control limits is presented.  

The proposed new Six Sigma-based R- and 

S-control charts are presented in Section 5.  

A study on the performance measures of the 

proposed R- and S-charts is made in Section 

6.  In Section 7 numerical examples are 

given to illustrate the working of the 

proposed Six Sigma-based R- and S-charts.  

The determination of average rung length for 

these specific examples is also given. The 

summary and conclusions are presented in 

Section 8.  

 

3. Phase I and Phase II control 

charts 
 

In practice, once a control chart is 

developed, then it has to be used for 

monitoring the process of interest.  However, 

the process parameters which are essential in 

the construction of control chart are often 

unknown to the experimenter.  There are two 

phases (Phase I and Phase II) in the 

development and application of control 

charts. In Phase I, a common statistical 

procedure is followed to estimate the 

parameters from samples taken when the 

process is in control or assumed to be in 

control (for more readers are referred to 

Woodall and Montgomery 1999; Vining, 

2009; Schoonhoven et al., 2011). In Phase II 

of the control charting process, the control 

chart developed by the estimated parameters 

in Phase I is applied for monitoring the 

process. 

Chakraborti et al. (2008) presented an 

overview and some results related to the 

development of Phase I charts.  According to 
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Chakraborti et al. (2008), a process is said to 

be in control with no presence of any 

assignable cause(s), if the quality 

characteristic of interest being monitored is 

close enough to the set target. In the event 

that any significant deviation is noticed in 

Phase I, then it is often suggested to keep 

updating the control limits by eliminating 

such out-of control incidences so that a 

reasonable set of control limits are used in 

Phase II for monitoring the process.  Jensen 

et al. (2006) suggested for the use of robust 

estimators in Phase I and at the same time 

they pointed out the importance of assessing 

the effectiveness of such estimators in Phase 

II applications. Schoonhoven et al. (2011) 

presented a study on design and analysis of 

control charts for standard deviation in 

which several estimators of standard 

deviation are used in Phase I and then 

assessed their impact during implementation 

in Phase II. Some of these estimators 

include, the commonly used average sample 

standard deviation and average sample 

range. The performances of charts with 

respective estimators are numerically 

evaluated. As discussed in the review of 

literature, use of appropriate (robust and 

efficient) estimator for unknown population 

standard deviation still remains a challenge 

to researchers and practitioners. 

In this paper, we propose to use the standard 

deviation, say X
 , estimated from the 

process/product specification of a quality 

characteristic, X , from the perspective of 

Six Sigma quality in the construction of Six 

Sigma-based R- and S-charts in Phase I. As 

discussed by Schoonhoven et al. (2011), 

while applying these charts in Phase II, if the 

process standard deviation, say ̂ , is equal 

to X
 , we call the process is in control, 

otherwise, the process is assumed to have 

shifted and in this case we have 

1,ˆ  
X . If 1 , we get an in-

control process standard deviation X
 ˆ . 

It may be noted that since our estimation is 

based on Six Sigma quality, we allow a shift 

of 5.1  times of standard deviation (for 

both R- and S-charts) as this process still 

ensures just 3.4 DPMO. This aspect is 

considered while computing the performance 

measure, Average Run Length (ARL). 

 

4. Traditional range and standard 

deviation charts 
 

4.1. Traditional range chart (R-chart) 
 

The Shewhart-type control chart for range 

(Shewhart, 1931) can be found in most of the 

statistics text books. For more on this chart 

readers are referred to Ravichandran (2010) 

and Montgomery and Runger (2005). Let 

R be the random variable representing range 

and let 
k

RRR ,,,
21


 
be the range values 

computed from k  sub-samples, each of size 

n , then the traditional three-sigma control 

limits for range R  is given by: 

 

23
/3 dRdR                                             (1) 

 

Where 

njki

xxRR
k

R
ijiji

k

i

i

 ,2,1,,,2,1

,minmax,
1

1



 
  

ij
x is the 

th
j observation of 

th
i  sample of 

some measurable characteristic, say X . 

Here, 2
d and 

3
d  are the constants for a 

given sub-sample size n tabulated in most 

texts books on statistics. It may be noted that 

the standard deviation of the range R  is 

originally given as 
3

d
XR

   where X
  is 

the population standard deviation of the 

random variable X . Since X
  is unknown, 

it is replaced by an estimate 2
/ dR . Hence, 

the distribution of R  (Gumbel, 1947) has 

mean R  and approximated standard 

deviation 23
/ˆ dRd

R
 , using central limit 

theorem, we have 
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9973.00027.01

]ˆ3ˆ3[




RR

RRRP 
                       (2) 

Therefore, the range 
i

R of 
th

i sample is said 

to be in control if  

 

RiR
RRR  ˆ3ˆ3 

                          
(3) 

 

and is out of control otherwise. 

 

4.2. Traditional standard deviation chart 

(S-chart) 
 

In addition to R-chart, Shewhart (1931) 

stressed the importance of analyzing the 

spread of the data using the control chart for 

sample standard deviations, called S-chart.  

This is due to the reason that an in-control 

state in an S-chart shows the stability of the 

process. If 
ij

x is the 
th

j observation of 
th

i  

sample of the measurable characteristic, say 

X , then we know that an unbiased estimator 

of 2

X
 is the average of the k  sub-sample 

variances (each subsample is of size n ) 

given by, 

 






k

i

i
S

k
S

1

22 1  

 

where: 

kiXx
n

S

n

j

iiji
,,2,1,)(

1

1

1
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


 
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are the k  sub-sample variances. Here, 

 

kiXx
n

S

n

j

iiji
,,2,1,)(

1

1

1

2
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
 
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are the sub-sample standard deviations. 

However, recall that the average sample 

standard deviation given by 




k

i

iS
k

S

1

1
is 

not an unbiased estimator of X .  

If the underlying distribution is normal, then 

S actually estimates
X

c 
4

, where 
4

c
 
is a 

constant that depends on the size n  of the 

sub sample. The constant 
4

c
 
is tabulated in 

most text books on statistics and may be 

calculated as given below. 

 

]2/)1[(/)2()1/(2
4

 nnnc  

Note that )!1(  mm
 
and  )2/1( . 

 

Therefore, we have, 

 

X
cSE 

4
)(    

 

and  

 

)1()(
2

4

22
cSV

XS
   

 

Therefore, 
2

4
1 c

XS
 

 
gives the 

sample standard deviation of S . If the 

population standard deviation 
X

 is known, 

then the 3-sigma control limits for standard 

deviation are given as: 

 

SXXX
ccc  313

4

2

44
  

 

However, if the population standard 

deviation 
X

 is not known then we can use 

4
/ cS  as an unbiased estimator of X  and 

hence the 3-sigma control limits become: 

 

2

4
1

4

3 c
c

S
S                                          (4) 

 

Hence, the distribution of S  has mean 

S and approximated standard 

deviation
2

44 1)/(ˆ ccSS  . Now, using 

central limit theorem, we have: 

 

9973.00027.01

]ˆ3ˆ3[




S

SS
S
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Therefore, the standard deviation 
i

S  of 

th
i sample is said to be in control if: 

 

SiS
SSS  ˆ3ˆ3                              (6) 

and is out-of-control otherwise. 

In fact, in addition to the estimators 

2
/ dR and 

4
/ cS  of the unknown 

population standard deviation
X

  used in 

the traditional control charts for dispersion, 

Schoonhoven et al. (2009, 2011) proposed to 

apply a number of estimators such as pooled 

sample standard deviation, trimmed mean of 

sample standard deviations, mean of sample 

standard deviations after trimming the 

sample observations, mean of sample inter-

quartile ranges, mean of the sample Gini’s 

mean differences, mean of sample averages 

of absolute deviation from the median, mean 

of the sample medians of the absolute 

deviation from the median, mean of sample 

medians of the absolute deviation from the 

mean and Tatum’s robust estimator. 

Whatever be the estimator used, it may be 

noted from (2) and (5) that the process under 

traditional R- and S-charts may go out-of-

control with probability 0.0027 leading to 

1349.97 DPMO that may not be often 

acceptable to the quality practitioners whose 

aim is to have zero defect process.  This is 

the prime focus of our research in which we 

establish that the proposed charts meet the 

Six Sigma quality requirement of just 3.4 

DPMO. 

 

5. Six Sigma-based R- and S- 

charts 
 

5.1. Six Sigma-based R-chart 
 

Given the specification limits for the 

measurable characteristics, say X , we have 

lower specification limit (LSL) and upper 

specification limit (USL). It is known that 

given X  that follows normal process with 

mean T
 

and variance 2
 , the 

specification of X  is usually given in the 

form 
X

KT  , where T is the target or 

population mean, K  is a positive constant 

and 
X

 is the population standard deviation. 

Now, we can estimate the unknown 

population standard deviation as Kd
X

/
 

(refer to Ravichandran, 2006), where 

X
Kd  gives half of the process spread 

USL – LSL. Since, range and standard 

deviation are closely related (Schwarz, 

2006), the standard deviation of R  for Six 

Sigma quality becomes. 

 

33
)/(ˆ dKdd

XRS
                             (7) 

 

For a typical Six Sigma Quality process we 

have 6K  and hence 6/dX   

Accordingly, since the distribution of R  

(Gumbel, 1947) has mean R  and standard 

deviation 
3

)6/(ˆ dd
RS

 . Now, by central 

limit theorem we have RS
RRZ ̂/)(   

which is the standardized normal variate and 

hence we have 

 

]ˆ)(

ˆ)([)]([

RSR

RSRR

KZR

R

KZRPKZZP















 

 

For a Six Sigma quality with centered 

process, we have 
9

102


 x , that is 

  9
10216


 xZP with 6)( 

R
Kz which 

implies: 

9
1021]ˆ6ˆ6[


 xRRRP

RSRS
  

9
101]ˆ6[]ˆ6[


 xRRPRRP RSRS 

 

Therefore, the Six Sigma-based control 

limits for range can be given as: 

 

RSR
KzR

R

ˆ)(                                        (8) 
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Where )(
R

Kz
R

  is the constant such that: 

R
KR

R

Kz

Z

KzP












1])(

)([

                                 (9) 

6

R
10)KtongicorrespondDPMO(

)2(




R

K


 

 

Here, 
S

K
 
is the current quality level with an 

allowable shift of 1.5 times of standard 

deviation at which the process is needed to 

be controlled. For example, if 6
S

K , then 

with shift, we have 4.3DPMO  either on 

left tail or on right tail. Therefore, 
6

108.6


 x
S

K
  which implies 

5.4)( 
S

Kz . Therefore, the control limits 

for Six Sigma-based S-chart become: 

 

RS
R ̂5.4                                           (10) 

 

and accordingly we have: 

 

9999932.0108.61

]ˆ5.4ˆ5.4[

6





x

RRRP RSRS 
          (11) 

 

Therefore, the range iR of th
i sample is said 

to be in control if 

 

RSiRS RRR  ˆ5.4ˆ5.4 
                 

(12) 

 

and is out- of- control otherwise. 

 

5.2. Six Sigma-based S-chart 
 

In case of traditional S-chart, we have 

2

4
1 c

XS
 .  

 

As discussed above for R-chart, for a typical 

Six Sigma Quality process we have the 

standard deviation as: 

2

41)6/(ˆ cdSS                                    (13) 

 

and hence by central limit theorem we have 

SSSSZ ̂/)(   which is the standardized 

normal variate and hence we have: 

 

]ˆ)(ˆ)([
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S
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For a Six Sigma quality with centered 

process, we have 9
102


 x , that is 

  9
10216


 xZP with 6)( SKz

S
 which 

implies: 

 
9

1021]ˆ6ˆ6[


 xSSSP SSSS   

 
9

101]ˆ6[]ˆ6[


 xSSPSSP SSSS 

 

Therefore, the Six Sigma-based control 

limits for standard deviation can be given as: 

 

SSSKzS
S


ˆ)(                                       (14) 

 

Where )( SKz
S

  is the constant such that: 

 

R
KSS KzZKzP   1])()([

      (15)
 

 
6

S 10)KtongicorrespondDPMO)(2(



S

K  

 

Here, SK is the current quality level with an 

allowable shift of 1.5 times of standard 

deviation at which the process is needed to 

be controlled. For example, if 6SK , then 

with shift, we have 4.3DPMO either on left 

tail or on right tail. Therefore, 
6

108.6


 x
S

K  which implies 5.4)( SKz . 

Therefore, the control limits for Six Sigma-

based S-chart become  

 

SSS ̂50.4                                               (16) 
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and accordingly we have: 

 

9999932.0108.61

]ˆ5.4ˆ5.4[

6





x

SSSP
SSSS


      (17) 

 

Therefore, the standard deviation 
i

S  of 

th
i sample is said to be in control if: 

 

SS

i

SS

S

S

S





ˆ5.4

ˆ5.4







                                              (18) 

 

and is out-of-control otherwise. 

The computation of the values of either 

)(
R

Kz  or )(
S

Kz with different sigma 

quality levels is discussed as follows.  If the 

process is operating at three sigma level, 

then we have the current quality level 

as 3
SR

KK . It may be noted that with 

allowable shift, a three sigma process may 

result in 66810.63 DPMO. Once this level is 

maintained, and if there is a scope for 

improvement, the practitioner may change 

the value of )(
R

Kz  
or )(

S
Kz . 

Therefore, various DPMOs, the 

corresponding )(
R

Kz or )(
S

Kz  values 

are given as shown in Table 1. For more 

details on computations readers are referred 

to Harry (1998) and Lucas (2002). 

 

Table 1. Determination of 
R

K
 or 

S
K

 and )( RKz or )( SKz  

SR KKK   DPMO  
SR

KK or   )()( SR KzorKz   

3.0 66810.63 0.1336210 1.50 

3.5 22750.35 0.0455010 2.00 

4.0 6209.70 0.1241900 2.50 

4.5 1349.97 0.0027000 3.00 

5.0 232.67 0.0004650 3.50 

5.5 31.69 0.0000634 4.00 

6.0 3.40 0.0000068 4.50 

 

Values given in Table 1 mean that there is 

flexibility (advantage) in using the proposed 

Six Sigma-based R- and S-control charts. 

That is, at any point of time when a process 

is being monitored, it may not meet the Six 

Sigma quality level due to higher level of 

variation. Under this circumstance, the 

quality practitioner can decide on 

appropriate )(
R

Kz or )(
S

Kz value in the 

control charts.  It is important to note that the 

control limits of traditional control charts 

can be improved to the control limits of the 

respective Six Sigma-based control charts if 

RSR
ˆˆ   and 

SSS
ˆˆ   . This is possible 

if significant reduction in the process 

variation is achieved. Comparing the 

capability of the processes from the 

perspective of specification limits, we notice 

that: 

RSRRSR
 ˆ5.1ˆˆ5.4ˆ3   

and  

SSSSSS
 ˆ5.1ˆˆ5.4ˆ3 

 

This means that while the proposed charts 

are capable of meeting the specification 

requirements with minimum possible 

variability, the traditional charts are not so 

capable of meeting the same due to higher 

level of variability. 

 

6. Performance measures for 

SSQC chart 
 

The performance of any proposed chart is 

usually studied by means of measures such 

as ARL, average time-to-signal (ATS), 

average adjusted time to signal (AATS) and 

average number of observations to signal 
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(ANOS) under both in-control and out-of-

control situations. For example, readers are 

referred to Davis et al. (1990), Chakraborti et 

al. (2008) and Schoonhoven et al. (2009) and 

Lee (2011). According to Schoonhoven et al. 

(2009), ARL is often used to describe the 

likely performance of a control chart as it 

will indicate quick detection of the out-of-

control situation.  It may be noted that a 

large ARL is always desired when the 

process is stable or in control (Crowder, 

1987). The run length of any control chart is 

the number of samples observed before an 

out-of-control signal is seen. The occurrence 

of an out-of-control signal is an indication 

that some change in the process has occurred 

due to some assignable cause(s) and hence 

attention is needed to identify and eliminate 

those cause(s). Clearly, a control chart is 

branded as superior, if its ARL is larger than 

that of the competing chart(s).  

In-control situation is referred to the process 

when there is no shift in the process with 

respect to the sample statistic being 

monitored, such as R and S , and an out-of 

control situation is referred to the process 

when there is a shift in the process with 

respect to R and S . Accordingly, under the 

assumption of geometric distribution for the 

number of attempts it takes for an out of 

signal, ARL can be determined. 

 

6.1. ARL for Six Sigma-based R-chart 
 

Since we used 
X

 as the known standard 

deviation obtained from the specification of 

the product characteristic X , it may be noted 

that the Phase I R-chart has been designed in 

such a way that the fixed false alarm 

probability (FAP) for Six Sigma-based R-

chart denoted by 
RS

P  is given as: 

 

6
108.6

]6//)ˆ5.4[(

]6//)ˆ5.4[(









x

dRRP

dRRP

P

XRSi

XRSi

RS





 

(19) 

However, in general, the lower limit for 

range is not considered for out-of-control 

situation, then the range 
i

R of 
th

i sample is 

said to be in control if:  

 

RSi
RR ̂5.4  

 

Therefore, 
RS

P given in (19) becomes: 

 

6
104.3

]6//)ˆ5.4[(







x

dRRP

P

XRSi

RS


       

(20) 

 

During the monitoring of the process in 

Phase II, it is known that the state of the 

process is said to be in-control with Six 

Sigma quality if each of 

RSiRS RRR  ˆ5.4ˆ5.4  , ki ,,2,1   

and the standard deviation )(
ˆ

XII of the 

process (in Phase II) is equal to the 

population standard deviation (or assumed 

standard deviation), that is 
XXII

 
)(

ˆ  and 

hence )(3
ˆˆ

XIIRS d   . In our case it is 

6/dX  that is obtained from the 

specification to ensure Six Sigma quality. 

Therefore, given 6/dX  , the fixed in-

control ARL or the fixed false alarm rate 

(FAR) of the process can be obtained as: 

294117

104.3

11

6
1




xIP
ARL

RS

ic
          (21) 

where 1RSIP is the in-control FAP given by: 

 

6

)(

1

104.3

]ˆ/)ˆ5.4[(







x

RRP

IP

XXIIRSi

RS

   (22a) 

In case of traditional R-chart, the in-control 

ARL can be obtained as 74000135.0/1  , 

since 00135.0]ˆ3[  RRRP  . 

As discussed by Lee (2011), when 

XXII  )(
ˆ  and hence XXII  )(

ˆ

 
with 

5.11   , the shifts are defined as small 
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standard deviation shifts and if 5.1  the 

shifts are defined as large standard deviation 

shifts. Here, as suggested by Six Sigma 

quality program, we allow an allowance for 

)(
ˆ

XII  up to 
X  with 5.11   since the 

process is still in control as long as 

XXII  5.1ˆ
)(   and hence the ARL under 

this situation can be obtained as: 

 

2

1

RS

shift
IP

ARL                                       (22b) 

 

5.11

],)(/)ˆ5.4[(

2









 XXIIXRSRiRP

RSIP

 (23) 

Therefore, the out-of-control ARL of the 

process can be obtained when  

XXII  5.1ˆ
)(   as follows 

RS

out
OP

ARL
1

                                         (24) 

 

5.1

],ˆ/)ˆ5.4[( )(









 XXIIRSi

RS

RRP

OP

        (25) 

Now using central limit theorem, the values 

of 
2RSIP  given in (23) for 

5.11   )50.1,25.1(  and the values of 

RSOP  given in (25) for 

5.1 )5.2,00.2,75.1(   are obtained. 

Accordingly, the in-control and out-of-

control ARLs given respectively in (22) and 

(24) are computed. 

 

6.2. ARL for Six Sigma-based S-chart 
 

In case of S-chart, it may be noted that the 

Phase I S-chart has been designed in such a 

way that the fixed false alarm probability 

(FAP) for Six Sigma-based S-chart denoted 

by SSP  is given as: 

6
108.6

]6//)ˆ5.4[(]6/

/)ˆ5.4[(









x

dSSPd

SSP

P

XSSi

XSSi

SS




(26) 

However, in general, the lower limit for 

standard deviation is not considered for out-

of-control situation, then the standard 

deviation iS of th
i sample is said to be in 

control if: 

 

SSi SS ̂5.4  

Therefore, SSP
 
given in (26) becomes: 

6
104.3

]6//)ˆ5.4[(







x

dSSP

P

XSSi

SS


        

    (27) 

During the monitoring of the process in 

Phase II, it is known that the state of the 

process is said to be in-control with Six 

Sigma quality if each of 

SSiSS SSS  ˆ5.4ˆ5.4  , ki ,,2,1   

and the standard deviation )(
ˆ

XII of the 

process (in Phase II) is equal to the 

population standard deviation (or assumed 

standard deviation), that is XXII  )(
ˆ  and 

hence 2

4)( 1ˆˆ cXIISS   . Therefore, 

given
XXII  )(

ˆ , the fixed in-control ARL 

or the FAR of the process can be obtained 

as: 

 

294117

104.3

11

6
1




xIP
ARL

SS

ic
         (28) 

where 1SSIP is the in-control FAP given by:  

6

)(

1

104.3

]ˆ/ˆ5.4[(







x

SSP

IP

XXIISSi

SS

          (29) 

In case of traditional S-chart, the in-control 

ARL can be obtained as 74000135.0/1  , 

since 00135.0]ˆ3[  SSSP  .  
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As suggested by Six Sigma quality program, 

we allow an allowance up to 
X  with 

5.11   as the process is still in control as 

long as XXIIX  5.1ˆ
)(   and hence the 

ARL under this situation can be obtained as: 

2

1

SS

shift
IP

ARL                                         (30)  

5.11

],)(
ˆ/)ˆ5.4[(

2









 XXIIXSSSiSP

SSIP

 
(31) 

Therefore, the out-of-control ARL of the 

process can be obtained when XXII  )(
ˆ , 

5.1  as follows: 

 

SS

out
OP

ARL
1

                                         (32) 

5.1

],ˆ/)5.4[( )(









 XXIISSi

SS

SSP

OP

     (33) 

Now using central limit theorem, the values 

of 
2SSIP  given in (31) are obtained for 

5.11   , )5.1,25.1(  and the values of 

SSOP  given in (33) are obtained for 

)5.2,0.2,75.1( . Accordingly, the in-

control and out-of-control ARLs given 

respectively in (30) and (33) are computed. 

Table 2 shows the ARL values 

 outshiftin ARLandARLARL ,  for the 

proposed Six Sigma-based charts and the 

traditional charts at different shift levels.  

Looking at the control limits and the ARL 

performance, it is clear that the proposed Six 

Sigma-based R- and S-charts outperform 

their traditional counterparts.  Though the 

approach to the construction of the proposed 

Six Sigma control charts is quite different, 

we applied the same procedure to determine 

ARL values for the traditional R- and S- 

charts as well and compared their 

performances. However, if there are charts 

with similar approach proposed in future, 

then effective performance comparison is 

feasible. The ARL values of traditional 

charts shown here are close enough to those 

obtained by Schoonhoven et al. (2011) 

through simulations when mean range and 

mean standard deviation are used to estimate 

unknown population standard deviation. In 

this article, we have considered numerical 

examples to demonstrate working of the 

proposed new charts in comparison with 

their traditional counterparts. The ARLs are 

worked out for these examples with an aim 

to facilitate better understanding of the ARL 

computation. 

 

Table 2. In-control and out-of-control ARLs with different shift levels 

 

In control 

ARL 

 inARL  

In control ARL with 

shift 
 shiftARL  

Out-of-control ARL 

 outARL  


 1  25.1  5.1  75.1  0.2  5.2  

Six Sigma 

Chart 
294117 1733 741 336 161 44 

Traditional 

charts 
740 25 15 10 7 4 

 

It may be noted that while probability of in-

of control signal under the proposed charts is 
6

104.3


x  that results in ARL 

= 294117)104.3/(1
6




x , in case of traditional 

charts we have ARL = 74000135.0/1  . 

Schoonhoven et al (2011) conducted 

simulations to determine the ARL values of 

the standard deviation chart when different 

estimators including average sample range 

and average standard deviation are used.   

The different sample sizes (30 and 75) each 
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with subsample of size 5 are considered.  

The ARLs obtained for all estimators in 

Schoonhoven et al (2011) are far below than 

the ARL of the proposed approach when the 

process is centered. The vast difference is 

due to the fact that the variability is kept to a 

minimum in the proposed approach as per 

the Six Sigma quality requirements. From 

Table 2, it can be seen that, the ARL value 

decreases as the shift in the process standard 

deviation increases. 

 

7. Illustrative Examples 
 

Example 1: R-Chart 

Montgomery and Runger (2002) provided 

data of an extrusion die that is used to 

produce aluminum rods. The diameter of the 

rods is considered as is a critical quality 

characteristic with specification (modified) 

535  inch. The range values for 20 samples 

of five rods each are given as 3, 4, 4, 5, 4, 2, 

7, 9, 10, 4, 8, 6, 4, 7, 3, 10, 4, 7, 8, 4. Now 

the control limits can be computed as 

follows: 

 

Control limits for traditional R-chart: 
From (1), it is known that three sigma-based 

control limits for traditional R-chart are 

given as 

95.11),(0

326.2/65.5864.0365.5

/3 23







UCLve

LCLxx

dRdR

 

With central line (CL) = 65.5R  

 

Six Sigma-based R-chart 
From (5), for a Six Sigma quality, the 

standard deviation becomes: 

 

72.0)864.0)(6/5(

)6/(ˆ
3



 ddRS
  

 

Now, using (6) the control limits for Six 

Sigma-based R-chart are given as 

 

89.8

,41.2)72.0)(50.4(65.5

ˆ50.4







UCL

LCL

R RS

 

With central line (CL) = 65.5R  

From Figure 1, it can be seen that according 

to the traditional R-chart, the process is well 

within control, whereas, the Six Sigma-based 

R-chart reveals, the process needs attention 

with regard to the points 9 and 16 as they are 

falling outside the UCL and also point 6 that 

is marginally below the LCL.

 

 
Figure 1. R-chart with traditional and Six Sigma-based control limits (Example 1) 

 

It may be noted that while the process 

standard deviation obtained from the 
specification is 833.06/5 X , the actual 

process standard deviation obtained is 
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43.2/ˆ
2)(  dRXII . This implies that 

XXII  92.2ˆ
)(   with the shift of 92.2  

which is above the allowed shift of 5.1 times 

of standard deviation. Accordingly, the 

current sigma level is computed as 

05.243.2/5ˆ/ )(  XIIR dK   which is likely 

to produce 20182 DPMO. This is an 

indication that the standard deviation of 2.43 

needs to be reduced so that it comes down to 

833.0  as required for Six Sigma Quality 

resulting in 3.4 DPMO. 

 

ARL values for the numerical example of 

Six Sigma-based R-chart 
It is observed that observed the process that 

the process standard deviation 43.2ˆ
)( XII  

has shifted by )5.1(92.2  . Therefore, if 

the out-of-control ARL is computed using 

Eqns. (24) and (25) as 

 

18
1



RS

out
OP

ARL  

 

05705343.0

]92.2ˆ/)ˆ5.4[( )( 



XXIIRSi

RS

RRP

OP

  

 

Example 2: S-Chart 
In the study of controlling the thickness of a 

film base with specification 7180  microns, 

five units each from twenty samples are 

taken and tested. With an aim to study 

whether the spread of thickness is under 

control, it is planned to develop control 

limits for an S-chart. The standard deviation 

values are computed and given as 2.35, 4.16, 

2.30, 4.87, 5.07, 3.21, 4.39, 3.27, 4.30, 5.03, 

5.03, 4.92, 4.51, 5.81, 3.54, 6.23, 6.35, 3.44, 

3.13, and 3.21. The control limits are now 

computed as follows: 

 

Control limits for traditional S-chart: 
From (3), it is known that three sigma-based 

control limits for traditional S-chart are 

given as: 

88.8),(0

94.01)94.0/25.4)(3(25.413
22

4

4





UCLveLCL

c
c

S
S

 

With central line (CL) = 25.4S  

 

Six Sigma-based S-chart 
From (10), for a Six Sigma quality, the 

standard deviation becomes: 

 

1358.094.01)6/7(

1)6/(ˆ

2

2

4



 cdSS

 

 

Now, using (11) the control limits for Six 

Sigma-based S-chart are given as: 

 

86.4,64.3

)1358.0)(50.4(25.4ˆ)(





UCLLCL

KzS SSS
S


 

 

With central line (CL) = 25.4S  

From Figure 2, if the traditional S-chart is 

used, the process looks well within control, 

whereas, the Six Sigma-based S-chart 

reveals, the process needs attention with 

regard to as many points falling outside both 

the control limits, meaning that the process 

is not under control in meeting the goal of 

Six Sigma. It may be noted that while the 

standard deviation obtained from the 

specification is 167.16/7 X , the actual 

average process standard deviation is 

observed as 52.494.0/25.4/ˆ
4)(  cSXII . 

This implies that XXII  87.3ˆ
)(   with the 

shift of 87.3  which is above the allowed 

shift of 5.1 times of standard deviation. 

Accordingly, the current sigma level is 

computed as 55.152.4/7ˆ/ )(  XIIS dK   

which is likely to produce an alarming 60570 

DPMO. Therefore, efforts must be taken to 

bring down the level of standard deviation 

close to 1.65 from 4.25 which will reduce 

the level of DPMO as required for Six Sigma 

Quality resulting in 3.4 DPMO. 
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Figure 2. S-chart with traditional and Six Sigma-based control limits (Example 2) 

 

ARL values for the numerical example of 

Six Sigma-based S-chart 
It is observed that observed the process mean 

range 25.4S  has shifted by 

)5.1(23.2  . Therefore, if this shifted 

process standard deviation holds good for 

the process then the out-of control ARL is 

computed using Eqns. (31) and (32) as: 

 

4
1



SS

out
OP

ARL  

26434729.0]87.3

ˆ/)ˆ5.4[( )(





X

XIISSiSS SSPOP




 

 

8. Summary and conclusions 
 

Minimizing variation in a critical 

process/product quality characteristic is an 

important objective of any quality 

improvement program such as TQM and Six 

Sigma. In fact, too much of variation of such 

a quality characteristic may result in many 

undesirable outcomes with respect to 

scrap/rework costs, customer satisfaction and 

product output.  SPC plays the key role in 

achieving process improvement though 

variance reduction for which control charts 

are found to be effective. These charts are 

not only useful in detecting unusual signals 

while monitoring a quality characteristic of a 

process or product, but they can help in 

maintaining the quality characteristic well 

within limits with process mean around the 

set target.  Therefore, it is always preferable 

to have a control chart that can detect such 

signals as early as possible. Though 

Shewhart-type charts are available in the 

literature, efforts are continuously made to 

improve the performance of existing charts 

that can fulfill the present day requirements, 

mainly due to the domination of industrial 

automation and information technology.  It is 

observed that, in most of the variable control 

charts, if the population standard deviation is 

unknown then the estimation of standard 

deviation is a challenging task.  

As discussed in the literature review, many 

studies have been made by various authors 

and practitioners, focusing on obtaining 

efficient and robust estimators of unknown 

parameters. In this paper, we proposed a set 

of new control charts for dispersion- the 

range and standard deviation charts- from 

the perspective of Six Sigma quality. The 

control chart is developed for Phase I 

situation and the same is maintained to 

monitor and analyze the performance of the 

process in Phase II.  In these proposed 

charts, the required standard deviation is 

obtained from the specification of the 

measurable characteristic of interest.  The 

multiplication factor for control limits are 
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then obtained by setting the Six Sigma goal 

of 3.4 DPMO with allowable shift in the 

mean range of the process. Therefore, is a 

process is found to be under control when 

the proposed charts are used, the process can 

be termed as a Six Sigma process at an 

appropriate sigma quality level. 

The ARL performances of the proposed 

charts under in-control and out-of control 

situations are studied in detail. The proposed 

charts are illustrated using numerical 

examples. Using the estimated process 

standard deviation, the current sigma quality 

levels of the process is also obtained in the 

respective examples. This helps in knowing 

the quantum of improvement required not 

only to bring the process under statistical 

control, but also to move towards the Six 

Sigma goal of 3.4 DPMO. From the 

illustrative examples, it can easily be 

concluded that the proposed control charts 

are more efficient than the respective 

traditional chart in the early detection of out-

of-control points. As a future work, it is 

planned to consider the other variable and 

attribute control charts from the perspective 

of Six Sigma quality. 
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