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MEASUREMENT ERROR EFFECT ON THE 

POWER OF CONTROL CHART FOR ZERO-

TRUNCATED POISSON DISTRIBUTION  

 
Abstract: Measurement error is the difference between the true 

value and the measured value of a quantity that exists in 

practice and may considerably affect the performance of 

control charts in some cases. Measurement error variability 

has uncertainty which can be from several sources. In this 

paper, we have studied the effect of these sources of variability 

on the power characteristics of control chart and obtained the 

values of average run length (ARL) for zero-truncated Poisson 

distribution (ZTPD). Expression of the power of control chart 

for variable sample size under standardized normal variate for 

ZTPD is also derived. 

Keywords: Measurement error, zero truncated Poisson 

distribution (ZTPD), Average Run Length (ARL), power 

 

 

1. Introduction1
 

 

Measurement is seldom, if ever, without 

error and is a significant issue in control 

chart. Often subject to measurement error, 

the process variability is observed in any 

control chart which is the combination of 

inherent variability in the processes and the 

error due to the measurement instrument. If  

the measurement error is large relative to the 

process variability, the control chart to detect 

any shift in the process level is affected 

(Kanazuka, 1986). For a discussion on the 

measurement error and its effect on the 

performance on control charts (Ryan, 2011). 

The consequences of measurement error on 

the actual performance of various control 

charts have long been a concern and studied 

by several authors. The effect of 

measurement errors for X  chart was 
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discussed (Bennett, 1954; Mizuno, 1961;  

Abraham, 1977; Mittag and Stemann, 1998). 

Singh (1964) considered measurement error 

in acceptance sampling for attributes. 

Kanazuka (1986) and Mittag (1995) studied 

the effect of measurement error on the power 

of the RX   control charts. Rahim (1985) 

observed the effect of non-normality and 

measurement errors on the economic design 

of charts. Walden (1990) measured the 

power of ,X  R  and RX   charts using 

ARL when measurement error affects the 

system. Linna (1991) studied the effect of 

increasing the measurement variance and 

slope of covariate model on Shewhart  

control charts. Tricker et al. (1998) 

investigated the effects of one particular 

aspect of measurement error (round-off) on 

R  control chart. 

Moreover, (Linna and Woodall, 2001; Linna 

et al., 2001) studied the effect of 

measurement error on Shewhart control 

charts using a linear covariate and 

multivariate control charts respectively. 
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Stemann and Weihs (2001) and Maravelakis 

et al. (2004) investigated the effect of 

measurement error on the EWMA chart. 

Shore (2004) derived the requirements of 

measurement error, to satisfy the various 

control charts. Yang (2002) investigated the 

effect of measurement error on the 

asymmetric economic design and S  control 

charts. Chang and Gan (2006) developed 

Shewhart chart for monitoring the linearity 

between two measurement gauges. Huwang 

and Hung (2007) considered the effect of 

measurement error on the control charts for 

monitoring multivariate process variability. 

Yang et al. (2007) derived a process model 

to take into account of measurement error on 

two dependent processes (Yang and Yang, 

2005). Xiaohong and Zhaojun (2009) 

investigated the effect of measurement error 

on the CUSUM chart for the autoregressive 

data. Costa and Castagliola (2011) examined 

the effect of measurement error and 

autocorrelation on the X  chart. Moameni et 

al. (2012) studied the effect of measurement 

error on the effectiveness of the fuzzy  

control chart to detect out of control 

situations. Maravelakis (2012) considered 

the old problem and investigated the effect 

of measurement error on the performance of 

the CUSUM control chart for the mean. 

More recently, Yang et al. (2013) proposed a 

new EWMA control chart to monitor the 

exponentially distributed service time 

between consecutive events with the 

measurement error instead of monitoring the 

number of events in a given time interval.  

The purpose of this paper is to study the 

effect of the two sources of variability on the 

power characteristics of control chart and to 

obtain the values of average run length 

(ARL) for zero-truncated Poisson 

distribution (ZTPD). Expression of the 

power of control chart for variable sample 

size under standardized normal variate for 

ZTPD is also derived. Effects of 

measurement error on control charts for the 

ratio of two Poisson distributions, as studied 

by (Sahai and Khurshid, 1993) is dealt in a 

separate paper (Chakraborty and Khurshid, 

2013). 

 

2. Power of control chart for ZTPD 

in the presence of measurement 

error  
 

2.1  Zero truncated Poisson 

distribution 

 

A probability distribution can be classified 

into four types, left, right, double and 

multip le truncation. The most common form 

of left truncation is the exclusion of the zero 

class. Probability distributions often arise in 

practice which are of the Poisson type, but in 

which the zero value is unobserved. This 

may occur in the situations when the 

observational apparatus becomes active 

when at least one event occurs. Examples of 

ZTPD may be found in many areas, such as, 

the number of accidents per workers in a 

factory, the number of persons per house 

suffering from an infectious disease or 

number of surface defects in x-ray film etc. 

A zero-truncated Poisson or positive Poisson 

random variable (Johnson et al., 2005) also 

called conditional Poisson random variable 

(Cohen, 1960) is a Poisson distribution with 

parameter   and .0)0( p  Thus, it is  

necessitated to scale the other probabilit ies 

by a factor of 
)0(1

1

p
 where 

 ep )0( , the original probability that 

0x , in order to still have a discrete 

probability function. Let nxxx ,...,, 21  be 

independent random variables each having a 

ZTPD with probability function 

)1(!
);(













ex

e
xXf

x

              (2.1) 

 

for ,...2,1x , where .0  The mean  

and variance of the above function are 
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The cumulative sum (CUSUM) and 

Shewhart control charts for ZTPD were 

developed by (Chakraborty and Kakoty, 

1987; Chakraborty and Singh, 1990) 

respectively. More recently, Balamurali and 

Kalyanasundaram (2013) have developed 

design and implementation procedures of 

CUSUM control schemes based on zero 

truncated Poisson distribution. 

 

2.2 Assumptions and notations 

 

In the development of the power of the 

control chart and ARL for equation (2.1), the 

following assumptions are made and 

notations are used: 

1. The process has ZTPD with mean  

1)]1([ 
 pep


  and variance 

)]}1(1[{)1( 22

ppp
pp ee 






 where 
2

p  denotes process (inherent) 

variability;  

2. The measurement process has a variance 
2

m . Thus, 
222

mp   ; 

3. The process is in a state of statistical 

control at the time of determining the 

control limits and the same measuring 

instrument is used for later 

measurements; 

4. When the process parameter shifts, the 

data is also come from ZTPD with mean  

  and variance 
22

mp   ; and 

5. The measurement of items have been 

taken to ascertain the number of defects 

per unit. 

  

Under the above assumptions, Shewhart 

control limits for c  chart will be 

22

mpK   . Usually K  is taken as 

3 for the calculat ion of control limits 

(Montgomery, 2013) as it covers at least 

99.73% of samples which is based on 

Shewhart's claim that control limits at 3 

standard errors are the most economical 

(Wheeler and Chambers, 2010). Hence the 

control limits are known as 3  limits. 

If we assume that X  is a Poisson variate 

with mean   and variance 

222

mp   , then following (Kanazuka, 

1986), the power of detecting the change of 

process parameter fo r c  chart is given by 

 

   2222

mpmpC KXPKXPP   .                             (2.4) 

 

Thus, using equations (2.2) and (2.3), we 

have 
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where m  is the process parameter of 

ZTPD, when the measurement process has a 

variance 
2

m . 

Hence, fo llowing equation (2.1), we have  

.
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The calculation of CP  for equation (2.5) is 

shown below in Table 1. 

 

 

Table 1. Power of control chart for ZTPD (under measurement error) 2p , 5887.12 p  

 
 

It can be seen from Table 1 that:  

1. increase in the shift of process parameter 

from p  to p , there is an increase in 

the power of the control chart CP  for 

fixed m , 
2

m  and UCL . Smaller the 

deviation )( ppd   , smaller the 

power of the test; 

2. relative measurement error )( 2R  tends 

to decrease as the power of control chart  

increase, resulting in increases in the 

shift of the process parameter (for fixed  

m , 
2

m  and UCL ); and 

3. for fixed deviation, the values of CP  

decrease and 
2R  increase as the values 

of m , 
2

m  and UCL  are increased. 

 

3. Power of control chart for (for 

variable sample size) under 

standardization procedure   

 

Instead of plotting the number of defects in 

the control chart, we can standardize the 

variates which can be plotted accordingly. 
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This stabilizes the variables and the resulting 

control chart. In this case, the control limits 

as well as central lines are invariant with 

sample size .n  

Thus, equation (2.4) can be expressed in 

terms of standardized normal variab le Z  

(when sample size is large and varies) 

n

x
Z

mp )( 22 




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                    (3.1) 
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Hence, following (Kanazuka, 1986) and 

using equation (3.1), when the process 

parameter changes from   to  , the 

power of the control chart for ZTPD is  
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where  ))( pp
d 

 , 
222

ppp
k 

  and 
222

pmR  . 

 

4. Average Run Length (ARL) under 

measurement error  
 

To study the sensitivity of the monitoring 

procedure both the average run length (ARL) 

and operating characteristic function are 

examined. ARL is the average number of 

points that must be plotted before a point 

indicates an out of control condition. For any 

Shewhart control chart, the ARL is  

1][  PARL where P  is the probability 

that a single point exceeds the control limits. 

Now, if the mean shifts from the incontrol 

value 0  to  k 01 , the 

probability of not detecting this shift on the 

first subsequent sample or the (   risk) 
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(Montgomery, 2013) is 

   pp LCLXPUCLXP  

                                                                (4.1) 

Hence, 1P  and  

1]1[  ARL                                   (4.2) 

The operating characteristic (OC) function 

expressed by the type II error probability  , 

is a measure of the inability of the control 

chart to detect the process shifts can be 

constructed for ZTPD by plotting   risk 

against the magnitude of the shift of the 

process parameter that is to be detected. The 

larger the  , the higher the probability that 

a control chart fails to detect the shift and 

vice-versa. 

Thus, for ZTPD, equation (4.1), under 

measurement error becomes 
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Hence, substituting equation (4.3) in  

equation (4.2), we can obtain ARL. The 

values of   and ARL are shown in Tab le 2.  

 

Table 2. Values of   and ARL for ZTPD control chart (under measurement error) 2p , 

5887.12 p  

 
 

It is observed from the Table 2 that the 

values of ARL  tend to decrease as the shift 

of the process parameters increase for fixed  

m , 
2

p , 
2

m  and UCL . Whereas for 

fixed deviation, ARL  values tend to 

increase as the values of m , 
2

m  and 

UCL  tend to increase. Further, if there is an 

increase in 
2

m , keeping 
2

p  fixed, that   

value increases as there is a decrease in 

deviation. Higher   values may become a 

matter of concern since accepting a null 

hypothesis pH  :0  when it is false 
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involves cost. Thus, where it is necessary to 

have a sample of s mall size, CP  should be 

set at a relatively high level so that the 

resultant   value does not become a matter 

of excessive concern. 

 

5. Conclusion 
 

We have drawn following conclusions from 

Tables 1 and 2: 

1. When plotted, values of CP  so 

computed for different values of p , 

given that pp    yield power for the 

control chart. It shows that for 

pH  :0  and ppH  :1 , the 

ideal situation is one in which 

01    when p   and 

11    when pp   . However, 

the ideal situation can never be achieved 

because CP  and   are always in 

opposite direction. The only way to 

move towards the ideal on both sides is 

to increase the sample size, keeping CP  

as fixed. 

2. A reduction in CP  leads to an increase 

in  . In other words, a reduction in CP  

is possible at the cost of an increase 

in  . 

3. The reduction in the acceptance region 

)(  shifts the power curve upward. 

4. Increase in sample size n  from 
1n  to 

2n  shift the power curve upward.  

5. Values of ARL  and   tend to 

decrease as the relative measures 
2R  

also tend to decrease as the process 

parameter p  to p  increase. 

Further , which is also considered as 

consumer risk, in the sense that one has to 

accept certain percentage of considerably 

bad lots or products. To protect oneself 

against poor quality, the consumer usually 

demands a small value of   for incoming 

quality P . From the Table 1 it has been 

observed the values of   changes as we 

increase the value of
2

m . This implies that 

the consumer will be affected if there is any 

measurement error in the product.
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