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THE APPLICATION OF BOX-BEHNKEN 

METHOD TO OPTIMIZE THE DESIGN OF 

EWMA CHART FOR AUTOCORRELATED 

PROCESSES 

 
Abstract: This research aims to evaluate the performance of 

the exponentially weighted moving average (EWMA) control 

chart under the situation that the observations are 

autocorrelated. Three autoregressive integrated moving 

average (ARIMA) models, AR (1), ARMA (1, 1) and IMA (1, 

1), and a step function were utilized to characterize the 

process model. The autocorrelated observations were 

monitored by the exponentially weighted moving average 

(EWMA) chart and the average run length (ARL) was used as 

the performance index. A response surface method, Box-

Behnken design, was utilized to carry out the optimal design of 

the EWMA parameters,  and L, while the robustness of the 

control chart was still maintained when there was no shift in 

the process. The empirical results show that the 

autocorrelation has a significant effect on the value of the 

ARL, i.e., the ability to detect a special cause and the 

occurrence frequency of a false alarm. Another important 

finding is that, under the autocorrelated situation (both 

stationary and non-stationary), the control limits of the EWMA 

chart should be narrowed down to L = 2 for the best 

performance. On the other hand, the value of  does not seem 

to have a significant effect on the ARL except only when the 

observation follows ARMA (1, 1). Moreover, the results also 

reveal that the size of a shift will impact the detection 

sensitivity of the EWMA to a shift only when the process is 

stationary. According to the study, if the EWMA chart utilized 

under the autocorrelated environment is appropriately 

designed, the practitioners on the shop floor will have a state 

of the art guidelines for achieving the highest possible 

performance when deploying the EWMA chart. 

Keywords: autocorrelation, autoregressive integrated 

moving average (ARIMA), average run length (ARL), box-

behnken design, exponentially weighted moving average 

(EWMA) chart 
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1. Introduction1
 

 
Statistical process control (SPC) is a 

methodology used for monitoring and 

reducing the variation in the manufacturing 

process and one of the most important tools 

of SPC are the different types of control 

charts. Generally, SPC works under the 

assumption that the observed data is 

independent. However, because of the 

advanced measurement technology, 

shortened sampling interval and the nature of 

processes, especially in the continuous 

processes, e.g., chemical processes, the 

independence of each observation has been 

violated in many scenarios. The lack of 

independence among each sample always 

comes up in the form of a serial 

autocorrelation. Therefore, the consequence 

is that a control chart signal fault alarms 

more often or does not signal when there is a 

shift. This behavior of process outputs has 

significantly deteriorated the performance of 

control charts and leads to the extensive 

studies regarding the SPC improvement for 

autocorrelated processes. 

 

2. Literature review  
 

The first step leading to the successful 

characterization of any standard charts is the 

capability to simulate the different types of 

autocorrelated processes. Under the normal 

and uncorrelated conditions, the process 

model has a fixed mean (), and the 

fluctuation around the mean is the result of a 

white noise (at). However, when 

observations are correlated, the correlation 

structure and a drift in the mean can be 

characterized by disturbances. If process 

observations vary around a fixed mean and 

have a constant variance, this type of 

variability is called the stationary behavior. 

Otherwise, the behaviour is non-stationary. 

(MacGregor, 1998) indicated that there are 
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two types of disturbances, deterministic and 

stochastic disturbances. Stochastic 

disturbances are random and might be 

stationary or non-stationary so it is the main 

source of autocorrelation in the data. On the 

other hand, deterministic disturbances are a 

step shift or ramp in the process mean. (Box 

et al., 1976) introduced a stochastic 

difference equation that can model stochastic 

disturbances. This equation is used to 

forecast one-step ahead disturbances, 

according to the data characteristics of 

stationary or non-stationary. Normally, it is 

expressed in the form of an autoregressive 

integrated moving average model, ARIMA, 

as shown in equation (1). 

qtaqtata

ptYdptYdtYdtYd
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

...11 

...2211

 (1) 

The ARIMA (p, d, q) model indicates p as 

the order of the autoregressive part, d as the 

amount of difference and q as the order of 

the moving average part. As recommended 

by Box et al. (1976), ARIMA (1, 0, 0) or AR 

(1) and ARIMA (1, 0, 1) or ARMA (1, 1) are 

likely to be the most suitable models to 

represent stationary processes while ARIMA 

(0, 1, 1) or IMA (1, 1) is the appreciated 

choice for non-stationary process. Therefore, 

several authors (Noorossana et al., 2003; 

Apley, 2012; Hwang et al., 2008; MacCarthy 

and Wasusri, 2001; Jiang et al., 2000) 

utilized the ARIMA model to simulate both 

stationary and non-stationary processes. 

Moreover, the performance of the traditional 

Shewhart chart was assessed by Wardel et 

al. (1992) when the tested data was modeled 

by ARIMA (1, 1). According to their work, 

the average run length (ARL) was used to 

measure the robustness of the designated 

chart. (Schmid, 1995) had computed the 

exact ARL of the classical Shewhart chart 

under the situations that the process was 

autocorrelated and followed the AR (1) 

model. The exploration of how EWMA chart 

performed was conducted by Schmid and 

Schone (1997) in the scenario that the 

observations were stationary. The 

autocorrelated scenarios were simulated by 
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using the Monte Carlo technique while the 

ARL was determined from the simulation. 

Moreover, the performance of each standard 

chart is also assessed by benchmarking with 

each other. One of these works is the 

performance comparison of X and EWMA 

chart by English et al. (2000). The objective 

is to quantify the ability of each chart to 

detect a special cause when the data is 

autocorrelated. Wardell et al. (1992) had 

compared the performance of the traditional 

and EWMA chart when the observations 

followed the ARMA (1, 1) model. The inside 

details regarding the run length was also 

studied by Wardell et al. (1994) when the 

observations was modeled by the ARMA (1, 

1). According to the study, the ARL and its 

standard deviation were calculated in order 

to determine the probability to detect an 

assignable cause at the early stage. The 

performance of the EWMA and CUSUM 

charts was numerically compared by 

VanBrackle and Reynolds (1997). For the 

comparison, the ARL of these two charts 

were computed when the process followed 

the AR (1) model. For multivariate times 

series, Kramer and Schmid (1997) studied 

the capability of the EWMA chart for 

monitoring multivariate time series which 

were also autocorrelated and simulated by 

the AR (1) model. 

Another way to improve the performance of 

standard charts is to filter the correlated data 

with the ARIMA model and the residual 

from the filter is monitored by the designated 

control chart.  This technique was used by 

MacCarthy and Wasusri (2002) and Lu and 

Reynolds (1999) to monitor the residual 

based data with the EWMA chart. Superville 

and Adams (1994) had utilized the ARIMA 

model to forecast the autocorrelated 

observations and the predicting residual was 

monitored by the CUSUM and EWMA 

charts. The step function was used to 

represent a special cause. 

In some cases, the actual data is utilized 

instead of the simulated data and these sets 

of data are acquired from different sources. 

For example, Vargas et al. (2004) had 

benchmarked the performance of two 

different charts (CUSUM and EWMA) to 

monitor the autocorrelated data acquired 

from a production process.  Similarly, 

Winkel and Zhang (2004) compared the 

performance of two different control charts 

for monitoring the biochemical quality data 

which was autocorrelated. The application of 

SPC and autocorrelated data is not limited to 

only the industrial data but the information 

technology data as well. For example, Ye et 

al. (2003) applied the EWMA chart to detect 

the analogous changes in the event intensity 

for intrusion detection while the data was 

correlated and simulated by deploying the 

AR (1) model. According to the literature, 

the EWMA is one of the most frequently 

used control charts to monitor the 

autocorrelated processes because of its 

sensitivity to a small shift. Moreover, its 

design is flexible since it allows the 

practitioners to select the suitable parameters 

to achieve the highest possible performance. 

However, there are a limited number of 

studies regarding the optimal design of the 

EWMA chart towards the autocorrelated 

observations. Moreover, most researches in 

the area do focus only on the specific 

process (stationary or non-stationary case) of 

the autocorrelation instead of the holistic 

point of view (both cases) so it is difficult to 

select the optimal value for designing the 

EWMA chart. In this research, a response 

surface method, Box-Behnken approach, is 

utilized as a mean to analyze and optimize 

the empirical results effectively and to 

achieve the optimal values of the EWMA 

parameters,  and L. For simplicity, this 

study concentrates on the actual value of the 

observations since the residual monitoring 

seems to be difficult for practitioners to use. 

As a result, this research will fulfill the gap 

and highlight the suitable setting of 

EWMA’s  and L under the autocorrelation 

scenario. 
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3. Innovations 
 

The basis of the analysis in this paper is a 

mathematical model used to study the effects 

of the process autocorrelation on the 

performance of the EWMA chart. Process 

disturbances are controlled by adjusting the 

level of autocorrelation in the form of the 

ARIMA parameters while a special cause is 

simulated by a step function. The 

autocorrelated process in this study is a 

continuous process with a quality 

characteristic, represented by Y. The 

evaluation of the EWMA chart performance 

is measured by considering the average run 

length (ARL) which is the average number 

of points plotted before a point indicated the 

out-of-control state. The observation of a 

process is considered from period 1 to 550 (t 

= 1, 2, 3,…, 550) and the process output 

( 1tY
) is equal to 

 

)(11 ttNTtY                          (2) 

 

The sources of the autocorrelation are 

process disturbances, characterized by the 

autoregressive integrated moving average 

model, AR (1), ARMA (1, 1) and IMA (1, 

1), as shown in equation (3), (4) and (5):  

 

11  tatNtN                                         (3)
 

tatatNtN   11                          (4) 

tatatNtN  11                               (5) 

 

where tNtN ,1  are the disturbances at time 

t+1 and t respectively, tata ,1  are the 

random errors at time t+1 and t respectively, 

 is the autoregressive (AR) parameter and  

is the moving average (MA) parameter. The 

values of  and  are between -1 and 1. 

Afterwards, an EWMA chart with the 

following control limits as:  
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        (6) 

where 0 is the average of preliminary data, 

L is the width of control limits and  is the 

weight assigned to the observation, is 

utilized to monitor the autocorrelated 

observations. To simulate a special cause, a 

shift of size 0 which is in the form of a step 

function is applied into a process at time t 

=50 as:  
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                                     (7) 

 

where 0 is the magnitude of a shift and t0 is 

the time that a shift occurs. 

 

4. Design of experiment 
 

To statistically optimize the monitoring 

procedure, a response surface method, Box-

Behnken design, was utilized to design an 

EWMA chart when the observations are 

correlated. Surface experiments are 

performed to fit either a first order model 

(linear function) or a second order model to 

the observations. The advantage of the Box-

Behnken technique is that it does not include 

any points at the vertices of the cubic region 

and the resulting design is still rotatable. Fig. 

1 shows the graphic example of the Box-

Behnken design for three factors. 
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Figure 1. Box-Behnken Design for Three 

Factors 
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Due to the study, all the potential factors, 

namely autocorrelation coefficients ( and 

), shift size and the EWMA chart’s 

parameters,  and L, are investigated to 

quantify the effect and optimize their values. 

Afterwards, the values of  and L are 

characterized in order to minimize the 

average run length (ARL) when an 

assignable cause does occur. Moreover, the 

robustness of an EWMA chart is also 

assessed when there is no shift. 

 

5. EWMA characterization 
 

The empirical study is based on the 

experiment relying on three process models: 

AR (1), ARMA and IMA (1, 1), which are 

widely used to simulate the autocorrelation 

process (both stationary and non-stationary). 

Regarding the simulation, each run or 

treatment is composed of 10,000 iterations 

which are accomplished by using Palisade’s 

@Risk® version 5.7. The random errors (at) 

in the disturbance model from each period 

follow the normal distribution with zero 

mean and a constant variance 

as:
)1,0(~ Nta

. The starting value (µ0) of 

the EWMA chart is equal to zero while the 

standard deviation of the chart is 1. 

According to the shift size, it is set at 1, 2, 3 

and 4 and the Box-Behnken design of 

experiment is done using a statistical 

package, Design Expert® version 8.0.7.1, to 

analyze the effect of the autocorrelation and 

other factors on the response. 

 

5.1 AR (1) 

 

The AR (1) process is popularly deployed to 

characterize the stationary process. Four 

factors, , , L and shift size, are studied and 

shown in table 1 (the range of , L and shift 

are adopted from the study by Lucas and 

Saccucci (1990) while the Box-Behnken 

design matrix for the experiment is shown in 

table 2. 

 

 

Table 1. Input factors and levels for AR (1) 

Case 

 

Table 2. Design Matrix for AR (1) case 

Order   Shift L ARL 

1 -1 0.05 2 3 8.78 

2 1 0.05 2 3 1.757 

3 -1 0.25 2 3 4.04 

4 1 0.25 2 3 1.453 

5 0 0.15 0 2 41.92 

6 0 0.15 4 2 1.476 

7 0 0.15 0 4 481.86 

8 0 0.15 4 4 2.59 

9 -1 0.15 2 2 2.52 

10 1 0.15 2 2 1.236 

11 -1 0.15 2 4 9.87 

12 1 0.15 2 4 1.662 

13 0 0.05 0 3 318.88 

14 0 0.25 0 3 264.19 

15 0 0.05 4 3 3.03 

16 0 0.25 4 3 1.697 

17 -1 0.15 0 3 50.12 

18 1 0.15 0 3 2.49 

19 -1 0.15 4 3 2.21 

20 1 0.15 4 3 1.286 

21 0 0.05 2 2 4.05 

22 0 0.25 2 2 2.31 

23 0 0.05 2 4 8.23 

24 0 0.25 2 4 5.62 

25 0 0.15 2 3 4.09 

26 0 0.15 2 3 4.24 

27 0 0.15 2 3 4.15 

Factor -1 0 1 

A (AR parameter; ) -1 0 1 

B () 0.05 0.15 0.25 

C (Shift size) 0 2 4 

D (L) 2 3 4 
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28 0 0.15 2 3 3.98 

29 0 0.15 2 3 4.04 

 

As shown in table 3, the statistical analysis 

was conducted in the form of the analysis of 

variance (ANOVA) and the inverse 

transformation was used to ensure that the 

residual does not violate the underlying i.i.d. 

assumptions. Due to the ANOVA, three 

factors, A (), C (shift) and D (L), along 

with the curvature (C2) has a significant 

effect on the value of ARL. In addition, it is 

interesting to note that the EWMA 

parameter, , is not the significant factor 

when the data follows the AR (1) model. 

 

Table 3. ANOVA for AR (1) case 

Source SS Df MS F 
p-

value 

A- 
0.3951

45 
1 

0.3951

45 

30.213

5 

< 

0.0001 

C-Shift 
0.8794

46 
1 

0.8794

46 

67.244

08 

< 

0.0001 

D-L 
0.1065

06 
1 

0.1065

06 

8.1436

54 
0.0088 

C^2 
0.0736

81 
1 

0.0736

81 

5.6337

97 
0.0260 

Residu

al 

0.3138

82 
24 

0.0130

78 
  

Total 
1.7686

59 
28    

After the model for analyzing the ARL in the AR 

(1) case was derived, the main effect plot was 

generated to quantify the influence of each 

significant factor. The Fig. 2 illustrates the 

relationship between  and ARL when the values 

of the other factors were set at the mid-points 

(average) as:  = 0.15, shift = 2 and L = 3. 
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Figure 2. Main Effect Plot of  
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Figure 3. Main Effect Plot of L 

 

According to Figure 2, the response surface 

analysis revealed that, for the AR (1) case, 

the more negative the  is, the higher value 

the ARL is. Furthermore, due to Fig. 3, the 

only EWMA design factor to be concerned 

(the effect of other factors are averaged at:  

= 0,  = 0.15 and shift = 2) is the multiple of 

sigma in the control limit (L) which should 

be assigned the value at 2 in order to 

minimize the ARL. However, another 

EWMA parameter, i.e., , is not significant 

so it can be set at any values between 2 and 

4. 
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Figure 4. Cube Plot of A, C and D 

 

According to the cube plot (Figure 4), the 

autoregressive coefficient () has a 

significant effect on the in-control ARL 

(ARL0) when  is averaged at 0.15. The 

ARL0 range is between 4.77233 ( = 1) and 

111.198 ( = -1) instead of 500 when there is 

no autocorrelation. 

 
5.2 ARMA (1, 1) 

 

The number of factors to be considered in 

the ARMA (1, 1) case is similar to AR (1) 

case except that there were two parameters 

in the ARIMA model ( and ). The ARMA 

(1, 1) is another model widely used in the 

literature to characterize the stationary 

processes. For optimizing the ARL, the 

factors to be tested are listed in table 4. 

 

Table 4. Input factors and levels for ARMA 

(1, 1) 

Factor -1 0 1 

A (AR parameter; ) -1 0 1 

B (MA parameter; 

) 

-1 0 1 

C () 0.05 0.15 0.25 

D (Shift size) 0 2 4 

E (L) 2 3 4 

 
All the above factors were tested for its 

influence on the ARL by deploying the Box-

Behnken design, and the completed design 

matrix is illustrated in table 5. 

 

Table 5. Design Matrix for ARMA (1, 1) 

Case 

Order    Shift L ARL 

1 -1 -1 0.15 2 3 9.78 

2 1 -1 0.15 2 3 1.25 

3 -1 1 0.15 2 3 2.97 

4 1 1 0.15 2 3 2.48 

5 0 0 0.05 0 3 316.01 

6 0 0 0.25 0 3 264.38 

7 0 0 0.05 4 3 3.03 

8 0 0 0.25 4 3 1.693 

9 0 -1 0.15 2 2 2.87 

10 0 1 0.15 2 2 2.51 

11 0 -1 0.15 2 4 6.28 

12 0 1 0.15 2 4 5.47 

13 -1 0 0.05 2 3 8.75 

14 1 0 0.05 2 3 1.724 

15 -1 0 0.25 2 3 4.03 

16 1 0 0.25 2 3 1.452 

17 0 0 0.15 0 2 43.82 

18 0 0 0.15 4 2 1.465 

19 0 0 0.15 0 4 480.18 

20 0 0 0.15 4 4 2.6 

21 0 -1 0.05 2 3 6.43 

22 0 1 0.05 2 3 5.8 

23 0 -1 0.25 2 3 3.93 

24 0 1 0.25 2 3 3.25 

25 -1 0 0.15 0 3 49.43 

26 1 0 0.15 0 3 2.46 

27 -1 0 0.15 4 3 2.22 

28 1 0 0.15 4 3 1.292 

29 0 0 0.05 2 2 4.05 

30 0 0 0.25 2 2 2.31 

31 0 0 0.05 2 4 8.22 

32 0 0 0.25 2 4 5.58 

33 -1 0 0.15 2 2 2.5 

34 1 0 0.15 2 2 1.237 
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35 -1 0 0.15 2 4 9.92 

36 1 0 0.15 2 4 1.655 

37 0 -1 0.15 0 3 22.1 

38 0 1 0.15 0 3 500 

39 0 -1 0.15 4 3 2.12 

40 0 1 0.15 4 3 1.994 

41 0 0 0.15 2 3 4.1 

42 0 0 0.15 2 3 4.09 

43 0 0 0.15 2 3 4.11 

44 0 0 0.15 2 3 4.12 

45 0 0 0.15 2 3 4.09 

46 0 0 0.15 2 3 4.08 

After running the analysis, the results shows 

that the inverse transformation is required 

for sustaining the residual assumptions.  The 

ANOVA in table 6 points out that the 

following factors, A (), C (), D (shift), L 

and A2, are highly significant. For the 

analysis, the main effect plot of  in Fig. 5 

portrays that the relationship between  and 

the ARL is non-linear. Moreover, the value 

of ARL seems to be low when  is highly 

positive. On the other hand, when the value 

of  falls in the negative range (from -1 to 

0), the ARL is higher than the ones for  in 

the positive range (from 0 to 1). 

 
Table 6. ANOVA for ARMA (1, 1) Case 

Source SS Df MS F p-value 

A- 0.677432 1 
0.677

432 
137.6717 < 0.0001 

C- 0.060211 1 
0.060
211 

12.23647 0.0012 

D-Shift 0.846273 1 
0.846

273 
171.9844 < 0.0001 

E-L 0.161167 1 
0.161
167 

32.75326 < 0.0001 

A^2 0.332763 1 
0.332

763 
67.62609 < 0.0001 

Residual 0.196825 40 
0.004
921 

  

Total 2.274671 45    
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Figurе 5. Main Effect Plot of  
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Figure 6. Main Effect Plot of  
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Additionally, the optimization was 

performed in order to determine the design 

of EWMA chart. Due to Fig. 6, the optimal 

values of  to minimize the ARL should be 

set at the lowest one at 0.25 (other factors 

were set at the mid-points). For the optimal 

value of L, Fig. 7 shows that the width of 

control limit should be narrowed to the 

lowest possible value at 2. 
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Figure 7. Main Effect Plot of L 

 

5.3 IMA (1, 1) 

 

According to the literature, the AR (1) and 

ARMA (1, 1) are the preferred models for 

characterizing the stationary processes. On 

the other hand, the IMA (1, 1) is the most 

popular model for representing the non-

stationarity. The design matrix for the Box-

Behnken method can be shown in table 7 

while the results after the experiment are 

shown in table 8. 
 

Table 7. Input Factors and Levels for IMA 

(1, 1) case  

 

 

Table 8. Design Matrix for IMA (1, 1) case  

Order   Shift L ARL 

1 -

1 

0.05 2 3 1.687 

2 1 0.05 2 3 313.51 

3 -

1 

0.25 2 3 1.478 

4 1 0.25 2 3 262.13 

5 0 0.15 0 2 1.698 

6 0 0.15 4 2 1.685 

7 0 0.15 0 4 3.5 

8 0 0.15 4 4 3.49 

9 -

1 

0.15 2 2 1.225 

10 1 0.15 2 2 42.29 

11 -

1 

0.15 2 4 1.706 

12 1 0.15 2 4 478.49 

13 0 0.05 0 3 3.31 

14 0 0.25 0 3 2.69 

15 0 0.05 4 3 3.31 

16 0 0.25 4 3 2.66 

17 -

1 

0.15 0 3 1.427 

18 1 0.15 0 3 281.33 

19 -

1 

0.15 4 3 1.408 

20 1 0.15 4 3 280.76 

21 0 0.05 2 2 2.16 

22 0 0.25 2 2 1.782 

23 0 0.05 2 4 4.75 

24 0 0.25 2 4 3.93 

25 0 0.15 2 3 2.52 

26 0 0.15 2 3 2.44 

27 0 0.15 2 3 2.4 

28 0 0.15 2 3 2.52 

29 0 0.15 2 3 2.47 

 

 

 

Factor -1 0 1 

A (MA parameter; 

) 

-1 0 1 

B () 0.05 0.15 0.25 

C (Shift size) 0 2 4 

D (L) 2 3 4 
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Table 9. ANOVA for IMA (1, 1) Case 

Source SS Df MS F 
p-

value 

A- 

1.69

082

2 

1 

1.6

908

22 

1204.

037 

< 

0.000

1 

D-L 
0.11

607 
1 

0.1

160

7 

82.65

388 

< 

0.000

1 

A^2 

0.20

257

4 

1 

0.2

025

74 

144.2

53 

< 

0.000

1 

Residu

al 

0.03

510

7 

25 

0.0

014

04 

  

Total 

2.04

457

3 

28    

 
Before conducting the analysis of variance in 

table 9, the inverse square root 

transformation is applied to the response to 

avoid the violation of the residual 

assumptions. According to table 10, only 

two factors, A (), D (L) and A
2
, have a 

significant effect on the ARL. When the 

non-stationary process follows the IMA (1, 

1) and an EWMA chart is utilized to monitor 

the process, the MA parameter () seems to 

have a significant effect on the ARL (Fig. 8). 

The ARL tends to be high when the value of 

 is highly positive (Fig. 9). For the EWMA 

parameter, i.e., L in this case, the optimal 

value for L should be set at 2 since it leads to 

the minimization of ARL. 
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Figure 8. Main Effect Plot of                     Figure 9. Main Effect Plot of L 

 

6. Conclusion 

 
This research focuses on the optimal design 

of EWMA chart on stationary and non-

stationary processes based on three different 

models, AR (1), ARMA (1, 1) and IMA (1, 

1), with the implementation of the Box-

Behnken method to analyze the data. The 

resultant analysis is concluded as follows: 

1. According to all cases of autocorrelation, 

the optimal value of EWMA parameter, 

L, should be narrower than the traditional 

ones in the literature and should be set at 

2. 

2. Only for the processes following ARMA 

(1, 1), the design parameter of EWMA, 

, is significant and should be set at 0.25. 

3. Obviously, the autocorrelation 

coefficients do have a significant effect 

on the capability to detect an assignable 

cause ( for stationary case and  for 

non-stationary case) in the autocorrelated 

environment. 

4. According to the empirical results, the 

existence of a shift in the process will 
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affect the ARL only when the 

observations are stationary. On the other 

hand, the special cause does not have a 

significant impact under the non-

stationary situation. 

In conclusion, the appropriate design of 

EWMA will lead to the better performance 

of a control chart to detect a shift resulted 

from a special cause in the autocorrelated 

processes. The different categories of 

stationarity need a different chart design and 

it will facilitate the application of 

practitioners when the process is 

autocorrelated. 
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