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ASSESSING GAUGE RELIABILITY AND 

REPRODUCIBILITY USING THE 

CORRELATION BETWEEN TWO 

MEASUREMENT SYSTEMS 

 
Abstract: In modern production processes, a large amount of 

testing and measurement is performed to support decision 

making and to ensure quality. In order to achieve this, the 

measurement data needs to be reliable, and the capability of 

measurement systems needs to be verified. Gauge reliability 

and reproducibility (GRR) is used for quantifying and 

analysing the variation in results caused by the measurement 

system. The purpose of this study is to introduce a simple 

method to assess GRR performance when there are two 
parallel measurement systems. The study shows that with 

certain assumptions, the Pearson correlation between 

measurement results of two measurement systems can be 

expressed using the GRR indices of these systems. This implies 

that the GRR performance of these measurement systems could 

be analysed based on this correlation. In certain situations this 

could save significant time compared to regularly performed 

GRR studies. 

Keywords: Gauge R&R, correlation, measurement, quality, 

measurement system analysis 

 

 

1. Introduction1
 

 

Expectations for the performance of 

production systems are constantly 

increasing, and these systems are becoming 

more advanced. This requires management 

to make decisions based on proper 

quantitative analysis of data. In the 

manufacturing process, control of variation 

with an increasingly high degree of precision 
demands an improved degree of 

measurement effectiveness (Hoffa and Laux 

2007). For this, it is crucial that the 

measurement data is reliable; therefore the 
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capability of the measurement systems needs 

to be monitored. 

Measurement Systems Analysis (MSA) is a 

collection of statistical methods for 

analysing measurement system capability 

(AIAG 2002; Smith et al., 2007). Previous 

research has shown that rising costs of 

measurement are a cause for concern in the 

industry (Neely et al., 1994).  

This study explores gauge reliability and 

reproducibility (GRR), one of the tools used 

in MSA. It is a methodology to quantify and 

analyse the variation in results caused by the 

measurement system (Larsen 2002; Larsen 

2003; Mader et al., 1999). Repeatability can 

be determined by measuring a part several 

times, effectively quantifying the variability 
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in a measurement system resulting from the 

gauge itself (AIAG 2002; Smith et al., 2007; 

Pan 2006). Reproducibility is determined 

from the variability created by several 

operators measuring a part several times 

each, effectively quantifying the variation in 

a measurement system resulting from the 
operators of the gauge and environmental 

factors, such as time (AIAG 2002; Pan 2006; 

Burdick et al., 2003; Tsai 1989).  

In all industry areas there is a constant need 

to speed up production processes (Louka and 

Besseris 2010). Regularly performing these 
studies can be time consuming, and 

achieving their goal in a more resource-

efficient way would help in reducing Cost of 

Quality without effecting product quality 

(Modrak 2007). This is particularly true in a 

situation where we have parallel 

measurement systems and a large number of 

measurements taken within each system, for 

example, a production system with two 

similar production lines with similar 

measurement system setups. In situations 
like this, it would be convenient to have a 

way to follow GRR performance without 

having to conduct full-scale GRR studies on 

both measurement systems.  

The purpose of this study is to introduce a 

simple method to assess GRR performance 
when there are two parallel measurement 

systems and to discuss its implications. The 

method is based on the correlation of the 

measurement results between the two 

systems. 

 

2. Definitions and assumptions  
 

2.1. Definitions 
 

The definitions presented below refer to a 

situation where we have two measurement 

systems X and Y measuring parts from the 

same production process. Both measurement 
systems and the production process are 

assumed to be normally distributed. The 

parts have actual values that the 

measurement system tries to capture, and 

observed values, which are the actual values 

combined with measurement errors caused 

by the measurement system. The actual 

value is also referred to as the true value 

(Burdick et al., 2003). 

σax is the variation of the actual values of 

parts measured with measurement system X, 

as shown in equation (1): 
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where xai is the actual individual values of 

the measured parts. The same relationship 

applies to: 

σay, the variation of the actual values of parts 

measured with measurement system Y, 

where yai is the actual individual values of 

the measured parts. 

 

 

σεx, the variation in measurement errors of 
measurement system X, where εxi is the 

individual measurement errors of each part. 

σεy, the variation of measurement errors of 

measurement system Y, where εyi is the 

individual measurement errors of each part. 

σox, the variation of observed values in 

measurement system X, where xoi is the 

individual observed values of each part. σox 

is referred to as total variation in GRR 

studies. 

σoy, the variation of observed values in 

measurement system Y, where yoi is the 

observed values of each part. σoy is referred 

to as total variation in GRR studies. 

GRRx stands for the gauge repeatability and 

reproducibility index of measurement system 

X. It is defined with equation (2) and is 

referred to as the percentage of total 

variation. GRRy is defined in the same 

manner. 
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The Pearson product–moment correlation 

coefficient is suitable for modelling linear 

correlation relationships. The Pearson 

correlation coefficient Ra for the actual part 
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values xai and yai is shown in equation (3). 

The correlation Ro between the observed 

values xoi and yoi is defined in the same way. 














n

i

aai

n

i

aai

n

i

aaiaai

a

yyxx

yyxx

R

1

2

1

2

1

)()(

))((

  (3) 

 

2.2. Assumptions 
 

The following assumptions about the 

measurement systems X and Y and the 

population of measured parts have been 

made in this study: 

1) Parts from the same population are used 

in the correlation and GRR studies, and 

this population is normally distributed.  

2) Measurement errors [εx1,εx2,εx3…εxi], 

[εy1,εy2,εy3…εyi] are independent of 

[xa1,xa2,xa3…xai], [ya1,ya2,ya3…yai], hence 
[εx1,εx2,εx3…εxi], [εy1,εy2,εy3…εyi] are 

independent of 

]...,,[ 321 aaiaaaaaa xxxxxxxx 

 and 

]...,,[ 321 aaiaaaaaa yyyyyyyy 

 

3) Measurement errors [εx1,εx2,εx3…εxi], 

[εy1,εy2,εy3…εyi] are normally 

distributed. 

4) The relationship of observed values xoi, 

actual values xai and measurement errors 

εxi is presented in equation (4). The 

same relationship exists between yoi, yai 
and εyi 

5) xoi = xai + εxi,                                                              (4) 

6) The means of measurement errors 

[εx1,εx2,εx3…εxi] and [εy1,εy2,εy3…εyi] are 

equal to 0 i.e., there is no bias. It should 

be noted that this assumption is made to 

clarify the calculations. Bias does not 

actually have an effect on correlation. 

7) The mean of the observed values 

[xo1,xo2,xo3…xoi]  are equal to equations 

(5) due to assumption 5. The same 

applies to [yo1,yo2,yo3…yoi]. 

8) axao xxx   ,                           (5) 

9) The observed value variation σox, actual 

value variation σax and measurement 

error variation σεx are related as shown 

in equation (6), using equation (2). The 

same relationship exists between σoy, σay 

and σεy.  
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3. Innovations 
 

In this section, the correlation of observed 

values Ro presented in equation (7) is 

expressed as a function of GRRx and GRRy, 

using the definitions and assumptions given 

above. 
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The numerator can be expressed as in 

equation (8) by using equations (4, 5): 
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Based on the assumptions, εxi and 
aai yy  , 

εyi and aai xx  , εyi and εxi are all 

independent and their means equal 0. This 

means that equation (8) can be expressed as 

in equation (9): 
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We can express the denominator as in 

equation (10) by using equations (1, 6): 
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By combining equations (9, 10), Ro can be 

expressed as in equation (11): 
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The actual correlation coefficient Ra (3) can 

be expressed as in equation (12) below using 

equation (1): 
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By using equation (12), we can express 

equation (11) as in equation (13): 
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This can also be expressed as in equation 

(30): 

 
2222 )1)(1( ayxo RGRRGRRR        (14) 

 

4. Discussion 
 

Equation 14 shows how the GRR indices of 

two measurement systems can be connected 
with the given assumptions by using the 

Pearson correlation coefficient. This could 

potentially be useful in a situation where 

there are parallel measurement systems and 

performing GRR studies on a regular basis 

would require considerable resources.  

A practical application could be based on 

monitoring correlation periodically instead 

of GRR studies. This could be done by, for 

example, measuring Ro using a set of master 

parts and comparing the results against a 

threshold level. If the same parts are used to 

calculate GRRx, GRRy, and Ro, Ra is 

theoretically 1. Table 1 presents sample 

values of Ro
2 using Equation 30 and different 

combinations of GRRx and GRRy. 

 

Table 1. Relationship of GRRx, GRRy, and Ro
2 when Ra = 1 

GRRx 10% 20% 20% 30% 40% 50% 60% 

GRRy 10% 10% 20% 30% 40% 50% 60% 

Ro
2 = (1 – GRRx

2) 

(1 – GRRy
2) 

0.98 0.95 0.92 0.83 0.71 0.56 0.41 

 

In practice the observed correlation is also 

affected by other sources of variation besides 

the variation accounted for in a GRR study. 

Therefore Ra ≤ 1 and 

)1)(1(
222

yxo GRRGRRR 
          

 (15) 

Theoretically, worst values for GRRx and 

GRRy related to different Ro
2 levels can be 

calculated using Equation 15. By setting 

GRRy = 0, we can calculate worst possible 

values for GRRx and the same can be applied 

to GRRy. Sample values are presented in 

Table 2. 

 

Table 2. Relationship of Ro2 and worst GRRx or GRRy values 

Ro
2 0.99 0.98 0.95 0.9 0.85 0.8 0.75 

Worst GRRx or 

GRRy 

10% 14% 22% 32% 39% 45% 50% 

 

Using Ro
2 information, we can draw 

inferences about the worst possible GRR 

levels of measurement systems X and Y. In 

other words, if the measurement results 

correlate highly, both GRRx and GRRy must 
be on a good level. This means we can set a 

control level for Ro
2 and use the 

measurement results for assessing GRR 

performance.  

A practical application of the results 

involves a situation with two measurement 
systems, an established system and a new 

one. Each system has 1000 fixtures, and each 

fixture has 10 cavities. Each cavity needs to 

be qualified for GRR and bias. The target for 

the new machine’s GRR has been set at 

 20% for each cavity. Performing 
individual GRR studies for each cavity 

would require considerable resources. 

Instead, the following inspection plan can be 

used to assess GRR performance against the 

target value: 

a) Measure a 10-piece sample on the 

established system. From previous 

studies it is already known that this 

system's GRR percentage is 10% for all 

cavities.  

b) Measure the same sample with the new 
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machine and perform a correlation study 

with the results. If Ro
2 > 0.95, the new 

machine’s cavity in question is qualified 

based on Table 1. 

This method was also piloted in to practice 

in a case production environment.The pilot 

results were encouraging; the rates of false 

passes and false rejections have stayed on 

predicted levels. This application was based 

on saving a set of master parts and 

periodically measuring them. If the 

production process is in control, it could be 

possible to use random samples from the 
production instead of a set of master parts. 

This would reduce the need for performing 

GR&R studies, as correlation between the 

measurement systems could be monitored on 

a continuous basis. 

 

5. Conclusion 
 

Modern production firms perform large 

amounts of testing and measurement to 

support decision making and to ensure 

quality. This means that making 

measurement and its supporting processes 

more efficient could be financially 

significant. GRR studies quantify and 

analyse the variation in the results caused by 
the measurement system. Regularly 

performing these studies can be time 

consuming, especially in a situation where 

we have parallel measurement systems. The 

purpose of this study is to introduce a simple 

method to assess GRR performance when 

there are parallel measurement systems 

without conducting full-scale GRR studies. 

In this study it was shown that with certain 

assumptions the Pearson correlation between 

measurement results of certain parts in two 

measurement systems can be expressed 

using the GRR indices of these systems, as 

in equation (14). 

These results imply that conclusions about 

the GRR performance of these two 

measurement systems can be drawn based on 

the correlation of measurement results. Thus, 

the correlation could be used to assess GRR 

performance of these systems. In practical 

use this could mean setting a threshold level 
for correlation and regularly measuring 

correlation against this level. In certain 

situations this could save significant 

resources compared to regularly performed 

GRR studies.  

The limitations of the study relate to the 
given assumptions. The results apply in a 

situation where two measurement systems 

are used to measure parts from the same 

normally distributed population. The 

measurement results were assumed to be 

independent and normally distributed. It was 

also assumed that there is no bias or 

linearity, although bias does not affect 

correlation. Significant linearity could have 

an effect on correlation. 

Potential areas for future research include 

expanding the results outside the 

assumptions of this study, such as the 

correlation of measurement results with 

distributions other than normal. Another 

topic could be how to integrate MSA into 

continuous process flow. 
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