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Abstract: As desirability functions, proposed by many authors, follow most 
of the properties of standard transfer functions used for ANN, the objective 
of hybridsation in this study is to make use the property of desirability 
function in the neural network architecture and evaluate their 
performances while training and optimizing the architecture for an input-
output relationship including the concept of composite desirability 
optimization technique when multiple responses are present. Two important 
desirability functions, proposed by Harrington, 1965 and Gatza et al., 1972 
are used in different combinations with the most useful tan-hyperbolic 
transfer function using real life data. Three useful hybrid combinations of 
transfer/desirability functions are observed based on consistent simulation 
performance, number of nodes and a new measure of composite MSE is 
proposed here. The work on incorporating the knowledge of composite 
desirability into ANN architecture and exploiting the non-linearity in inputs 
versus outputs during normalization is also attempted. 
Keywords: Desirability function, Neural network, Transfer function, 
Hybridisation, Process modeling 

 
 

1. INTRODUCTION 
 

The quality of a product or service is the set of 
characteristics, which are defined operationally, often 
interrelated with different significance and measured in 
different scale of units. For example, the quality of a 
steel-rolled product depends on its characteristics like 
tensile strength, hardness, elongation and so on. Another 
example could be weight, shape, taste, flavour and the 
baking quality of biscuits. Some of these characteristics 
may be interrelated to each other.  

The concept of desirability scale arises when there 
is a need to combine the magnitude of several 
characteristics to a dimensionless scale (say, d). 
Generally, this desirability function is so constructed 
that any property (characteristic) value of a product or 
service is mapped between zero and one [1]. A 
desirability scale value of one means the optimum 
property level of the product or service whereas zero 
desirability indicates an unacceptable product or 
service. Any value in between zero and one gives an 
opportunity to improve the product (or service) quality 
depending on the closeness to these extreme two points. 
Harrington, 1965 [1] first defined the desirability 
function, a slight modification of which was done by 
Gatza et al. [2] for which the desirability scale can be 
negative for negative input values. Some different forms 
of desirability function are also proposed by Derringer 
et al., 1980 [3].  

A composite desirability scale, say D, represents 
the geometric mean of individual desirability values 
arising out of several properties. Mathematically, it is 

defined as  
n

ndddD ..... 21=   ……………………(1) 

where, d1, d2, …dn are the desirability values for n 
properties of the product (or, service) 

The geometric mean is taken because in most 
product development situation, if any one property is so 
poor that the product is unsuitable for application, then 
the individual desirability value will be zero and hence 
the composite desirability will also be zero. On the other 
hand, the upper bound of D is always one when d1, d2, 
…dn are all one.  

Sometimes, if the product properties are 
interrelated based on their importance on the final 
product quality, and then an appropriate power (weight) 
of each d is considered. The modified composite 
desirability, as suggested by Derringer, 1994 [4] is then 
defined as  
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…….….(2) 

This modified desirability function, since differentiable, 
may be used for the optimization process [5]. The use of 
the method of concurrent optimisation is demonstrated 
to improve the product quality in a real life industrial 
manufacturing set-up [6].  

An artificial neural network (ANN) is an 
information processing paradigm that is inspired by the 
biological nervous systems, such as the brain. It is 
configured for a specific problem like pattern 
recognition, data classification or prediction through a 
learning process. Learning in biological system involves 
adjustment to the synaptic connections that exist 
between the neurons [7-9]. All neural networks have 
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some set of processing units that receive inputs from the 
outside world, which can be referred to appropriately as 
the ‘input units’ or ‘input nodes’. It does have one or 
more layers of ‘hidden’ processing units that receive 
inputs only from the other processing units.  

The set of processing units that represent the final 
result of the neural network computation is designed as 
the ‘output units’. In the last decade many statisticians 
have investigated the properties of neural network and it 
appears that there exists a considerable overlap between 
statistical and neural network modeling.  

There are similarities of terminologies between 
statistics and neural network like (variables, features), 
(estimation, learning), (estimates, weights), 
(interpolation, generalisation); (observations, patterns) 
and so many [10]. The principal difference between 
neural networks and statistical approaches is that neural 
network makes no assumptions about the statistical 
distribution or properties of the data, and therefore tends 
to be more useful in business and practical situation. 

The purpose of this work is to make an attempt of 
hybridizing the functional forms desirability functions 
using their mathematical properties such as continuous, 
differentiable and boundedness into the neural network 
architecture in several ways.  

This arises since desirability functions follow the 
same properties of standard transfer functions used in 
the NN architecture along with the incorporation of the 
concept of composite desirability while modeling the 
process for its control and optimization through neural 
network analysis.  

 
 

2. TRANSFER FUNCTION AND 
DESIRABILITY FUNCTION             

 
Transfer Functions 

 
It is used to calculate the output response of a 

neuron. The sum of the weighted input signal (net input) 
is applied with an activation to obtain the response. For 
neurons in the same layer, same transfer functions are 
used. The non-linear transfer functions are used in a 
multiplayer net. The transfer functions may be simply 
non-negative identity function, step function, ramp 
function, sigmoid etc. Transfer function whose outputs 
saturate (e.g. f(x) = 1 and f(x) = 0 as x tends to ∝ and – 
∝ respectively) are of great interest in all neural network 
modeling. Inputs to a neuron that differs very little are 
expected to produce approximately the same output, 
which justifies using continuous node function. Another 
property of transfer function is that it should be 
differentiable for implementing different learning 
algorithms. These functions typically fall into one of 
three categories: linear, threshold and sigmoid. For 
linear units, the output activity is proportional to the 
total weighted output. For threshold units, the output are 
set at one of two levels, depending on whether the total 
input is greater than or less than some threshold value. 
For sigmoid units, the output varies continuously but 
not linearly as the input changes. Sigmoid units bear a 
greater resemblance to real neurons than do linear or 
threshold units, but all three must be considered rough 
approximations. A list of few important transfer 
functions commonly used in network architecture is 
shown below. 

 
Figure 1 - Standard Transfer Functions for NN Architecture 

 
The hard-limit transfer function limits the output of the 
neuron to either 0, if the net input argument n is less 
than 0; or 1, if n is greater than or equal to 0. The 
purelin (linear) transfer function produces the output (a) 
of the neuron equal to the net input argument n. The 
log-sigmoid transfer function takes the input, which 
may have any value between plus and minus infinity, 
and squashes the output into the range 0 to 1. 
 
Tan-Sigmoid Transfer Function 
 
The graph of the tan-sigmoid transfer function is shown 
below. 

 
Figure 2 - The graph of the tan-sigmoid transfer 

function 
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This function approaches its bounds –1 and +1, different from the earlier functions discussed, more 
quickly than others. The functional form of this transfer 
function is 

nn

nn
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=    …………..(3)  

Desirability Function, proposed by Harrington 
(1965) 

xeey
−−= , for one sided specification…..(4)  

The value of y varies from 0 to 1 and it is differentiable 
except y = -1. Using this desirability function a transfer 
function named ‘Harring’ and a derivative function of 
above desirability function named ‘dHarring’ has been 
constructed for use in this work. The form of derivative 
function is 
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Desirability function, proposed by Gatza & McMillan 
(1972)  
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This is a modification of Harrington’s function, which 
produces negative values of desirability for 
unacceptable properties. Using this desirability function 
a transfer function named ‘Gatza’ and a derivative 
function of above desirability function named ‘dGatza’ 
has been constructed here. The form of derivative 
function is  
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3. AN APPROACH OF HYBRIDIZATION 
 

The overall aim of this work is to make use the 
property of desirability function in the neural network 
architecture and evaluate their performances as a hybrid 
neural network model while training and optimising the 
architecture for a complex, non-linear input-output 
relationship including the concept of composite 
desirability optimisation technique when multiple 
responses are present. 

Since desirability functions follow most of the 
properties of standard transfer functions used for ANN 
like bounded between zero and one and differentiable, 
the concept of hybridsation develops. In this work, two 
desirability functions would be used in different 
combinations with the existing transfer function for 
training and optimising the architecture using real-life 
process data.  The functional forms of their derivatives 
are therefore required to use the gradient-based training 
algorithm; either scaled conjugate gradient (SCG) or 

Levenberg-Marquardt optimization. The corresponding 
programs for desirability functions are written in 
MATLAB and used later as a transfer function while 
training.  

In the second stage of the study, concept and 
formula of composite desirability optimisation is 
hybridised in the neural network model, the architecture 
is customarily designed and then an attempt was 
undertaken to evaluate its performance on multiple 
responses from another set of process data. 

The plan of study is therefore formulated as 
follows. 

Step-1. Fixing a 2-layer architecture, for training 
using different combinations of existing transfer 
function and the new ones based on desirability 
functions, as proposed by Harrington and Gatza. 

Step-2. Evaluating the performance of different 
combinations of transfer functions based on simulating 
(testing) the architectures and then attempting to 
optimise those with respect to mean square errors. 

Step-3. Normalizing the database using the 
bounded property of desirability function and then 
comparing the performances of network training with 
the results when usual ‘minimax normalization’ is done. 

Step-4. Choosing the best alternative desirability 
function as transfer function and incorporating them in 
the ANN architecture to optimise multiple responses 
using composite desirability optimisation criteria. 

 
 
4. PROCESS INFORMATION – 

VARIABLES FOR ANN 
 
For the first phase of study, data were considered 

with the objective of robust control of fermentation 
process. The fermentation process is a biological base 
system that runs smoothly depending on effective 
operator supervisory and formulated rules from 
knowledge based systems (Lennox, [11]). However, 
maintaining consistency of growth pattern over the 
batches of commercial yeast production through 
addition of water, molasses and other chemicals creates 
problem to the manufacturer. The data used in this 
context is obtained from an industry producing baker’s 
yeast. Relevant information on fermenter parameters 
[Air CFM, Temp, pH, Dip (M), Vol(L), Amps, ALC %, 
Spin], Yeast in fermenter (kg., increment, G.M.), Wort 
and other chemical additions are collected from Brew 
sheet for consecutive batches of yeast production. 

The input parameters and corresponding output 
characteristics were selected first. There is a total of 16 
time sequences (hours of production) for a particular 
batch of yeast fermentation. The necessary collected 
information on complete batch operation with selected 
parameters for analysis is given below.  

1) Time sequence: X1 
2) Airflow rate at that particular sequence: X2 
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3) Temperature for this interval: X3 
4) PH of the liquid at the start of the sequence: X4 
5) Alcohol (%) of the liquid at the start of the 

sequence: X5 
6) Residual sugar at the start of the sequence: X6 

7) % Increase of yeast at the end of the time 
sequence: Y 

A total of 800 observations, equivalent to 24 batches, on 
the above parameters are collected. The ranges of the 
variables used in this work are as follows. 
 

             Table 1. Summary Statistics of Variables 
Sl. No. Variable description Coded 

variable 
Unit Minimum 

(Xmin) 
Maximum 

(Xmax) 
1 Time sequence X1 -- 1 16 
2 Airflow rate X2 CFM 2000 4000 
3 Temperature X3 0C 30.75 36.42 
4 pH X4 -- 4.040 5.235 
5 Alcohol X5 % 0.087 0.190 
6 Residual Sugar X6 Kg. 97.00 1069.00 
7 % Increase of yeast  Y % 1.64 24.71 

 
Each variable (say, Xi) is normalized within the range of 
0 to 1 for ANN modeling by the “minimax 
normalization” technique as 

minmax

min

XX
XX

X N −
−

=      …………(8) 

where XN is the normalized value of the variable Xi, X is 
the actual value and Xmax and Xmin are the maximum  
 

and the minimum values of Xi, respectively. 
In the second stage of the study, data were 

considered from steel product rolling process. In metal 
formation of steel, material property during formation 
depends primarily on the number of constituents, some 
of which are controllable and others are not. The 
necessary constituents considered here are given below. 

 
             Table-2.  Summary Statistics of Variables 

Sl. No Variables Coded from 
in Equation 

Lower 
Boundary 

Upper 
Boundary Units 

1 Pearlite X1 0 35 Frac..% 
2 Manganese X2 0.25 1.5 Wt. % 
3 Silicon X3 0 0.4 Wt. % 
4 Phosphorus X4 0 0.05 Wt. % 
5 Tin X5 0 0.2 Wt. % 
6 Free Nitrogen X6 0.005 0.024 Wt. % 
7 Sulphur X7 10 40 μm 

 
The response variables and their relationship with 

the constituents (obtained from the prior knowledge in 
materials science) considered in this work are given 
below. 

Uniform Elongation, Y1  = 0.27 – 0.16 * X1 - 0.015* 
X2 – 0.04* X3 – 0.043 *X5 – 1.1* X6. 

Flow Stress at 0.2 % strain, Y2 = 15.4 * (16 +0.27 * 
X1 + 2.9* X2 + 9* X3 + 60* X4 + 11* X5 + 244*X6 + 
0.97/sqrt(X7))…………(9) 

Data were generated based on these two equations. 
 
 
5. RESULTS AND INTERPRETATION 
 
A multilayered feed-forward fully connected 

network 6-N1-N2-1 is considered, where the number of 
input variables (neurons) is six, N1 and N2 being the 
number of neurons in the two hidden layers and 
%growth (Y) of yeast is considered as the single  

output variable. The tan-sigmoid function is used as a  
standard transfer function in one of the hidden layers 
while Purelin transfer function is used at the output 
layer only. The two hidden layers of the architecture 
have been varied with the 9 transfer function 
combinations as ‘tansig-tansig’,‘tansig-
Harring’,‘tansigGatza’,‘Harring-tansig’,‘Gatza-tansig’, 
‘Harring-Gatza’, ‘Gatza-Harring’,‘Harring-Harring’ and 
‘Gatza-Gatza’. 

Data used in the entire analysis is considered from 
fermentation process as described in the earlier section. 
A total 800 observation used in this work is divided 
randomly into two groups in the ratio 80:20, for training 
and testing (simulating) respectively. The number of 
neurons, N1 and N2, for the architecture  (6-N1-N2-1) 
has been varied for each combination of transfer 
functions with the condition that N1 is greater than or 
equal to N2. This ensures lesser non-linear complexity 
and more stability towards convergence. All the 
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networks are trained with supervised LM algorithm. The 
learning parameter and the momentum parameter are 
kept fixed at their default values. The maximum epochs 
is set at 600. 

For each of the above transfer functions 
combination, a set of 21 architectures has been 
considered by varying the number of hidden neurons in 
the two hidden layers, starting from (6-1-1-1) to (6-6-6-
1), thus increasing total number of hidden nodes from 2 
to up to 12. For each architecture, a sample of 10 train-
MSE has been observed with a maximum number of 

600 epochs each. The average and standard deviation of 
these 10 samples are given for each architecture under 
each transfer function combination (see Annesure-1) 
along with the overall averages. All these trained 
networks are used to simulate (test) over rest 20% data 
in the same manner and the subsequent statistics of 
simulation study have also been illustrated in Annexure-
1. The plots of average train MSE and test MSE versus 
the number of hidden nodes, considering all the 21 
architectures are shown in Figure-3 for each of the 9 
combinations of transfer functions.  
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TF Combination: Harring-Harring
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Figiure 3 Training performances for different combination of transfer functions 
 

The overall summary statistics for each of the 9 combinations of transfer functions are given below. 
 
             Table-3.  Overall Summary Statistics of Mean Square Error (MSE) 

Combinations of Transfer Functions 
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Training          
Average 1.2403

91 
1.2421

69 
1.2904

29 
1.2698

64 
1.2837

7 
1.3020

67 
1.3465

59 
1.2705

33 
1.3140

91 
Std. Dev. 0.0687

03 
0.0853

65 
0.2197

06 0.1979 0.1926
62 

0.2000
69 

0.7218
34 

0.0922
07 

0.1944
26 

Minimum 0.9241
83       

(6-6) 

0.9493
49       

(6-6) 

0.9676 
(6-6) 

0.9320
88      

(6-6) 

0.9826
69       

(6-6) 

1.0232
96      

(6-5) 

1.0209
35      

(6-5) 

0.9579
07       

(6-6) 

1.0254
51       

(6-5) 
Maximum 1.6539 

(1-1) 
1.6534 
(1-1) 

1.6501
4 (1-1) 

1.6692
7 (1-1) 

1.6577
9 (1-1) 

1.6440
6 (1-1) 

2.5087
4 (3-1) 

1.6512    
(1-1) 

1.7259
7 (3-1) 

Testing          
Average 1.8568

37 
6.7434

47 
1.9846

66 
19.784

62 
8.7062

78 
19.094

99 
65.324

88 
580.09

08 
12.788

14 
Std. Dev. 1.0810

26 
63.949

86 
1.2114

37 
210.62

88 
97.327

54 
159.84

13 
819.68

2 
7053.4

75 
155.56

89 
Best 

(Minimum) 
1.4275

2        
(6-1) 

1.6079
8        

(3-3) 

1.4973
7       

(4-2) 

1.4470
8        

(4-4) 

1.5509 
(6-2) 

1.4821
7        

(5-1) 

1.5057
9       

(4-3) 

1.4990
6        

(4-4) 

1.4772
6        

(4-1) 
Worse – 1  

2.5202 
(4-1) 

2.6969
7 (6-2) 

2.7005
6 (5-4) 

2.7543
4 (6-6) 

2.5010
2 (5-3) 

41.847
66       

(6-2) 

3.2031
3 (5-4) 

131.03
18       

(4-2) 

3.5541 
(3-3) 

Worse – 2 
2.6821
2 (6-6) 

9.1259
3 (6-3) 

2.9698
6 (5-5) 

86.715
95      

(5-3) 

6.0836
7 (6-6) 

117.47
68      

(6-3) 

5.6416
4 (6-6) 

1983.0
51       

(6-2) 

7.0382
1 (6-6) 

Worst 
(Maximum) 2.8294

2 (6-4) 

95.017
22       

(6-4) 

3.6534
2 (6-5) 

295.51
58      

(5-4) 

142.47
96       

(4-2) 

198.75
05      

(5-3) 

1328.8
48      

(6-3) 

10029.
64       

(6-3) 

226.86
74       

(4-2) 
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The following observations are made from Table 2. 

1. Minimum and Maximum train MSE, out of 21 
architectures, were observed mostly in case of 
minimum (1-1) and maximum (6-6) number of 
hidden nodes of an architecture, except the cases 
like (3-1) and (6-5). This is expected since, in 
general, train MSE decreases with the increase in 
number of nodes for architecture. 

2. Considering test MSE of 21 architectures, 
average and standard deviations were estimated 
for each of transfer function combinations 
selected for this study. It is observed that the 
average levels are quite low for two 
combinations, tansig-tansig (1.856837) and 
tansig-Gatza (1.984666) respectively. The 
performance of testing is also quite consistent 
(1.081026 and 1.211437 respectively) for these 
two combinations over all the 21 architectures 
selected. 

3. For each of the transfer function combinations, 
the optimum architecture was found based on the 
minimum test MSE. The total number of hidden 
nodes is varying from 5 (4-1) to 8 (4-4, 6-2).  

4. The last three worse situations of testing MSEs 
were tabulated along with the respective 
architectures to see the extent of skewness for 
test MSE values from a set of over 21 
observations. In two cases, Harring-Gatza and 
Harring-Harring, the first worse situation itself is 
starting from a test MSE value of 41.84766 and 
131.0318 respectively, which are definitely 
unacceptable. 

The following table arranges the transfer function 
combination, the best architecture and its total hidden 
nodes based on minimum test MSE in ascending order 
of magnitude.  

 
         Table-4.  Comparison of TF-combinations based on MSEs and Nodes  

Sl 
No. 

TF-combination test mse train mse architecture # hidden 
nodes 

Remarks 

1. tansig-tansig 1.42752 1.17579 (6-6-1-1) 7 test MSE more consistent 
(ref. Table-2) 

2. Harring-tansig 1.44708 1.21092 (6-4-4-1) 8 More nodes, Inconsistent 
test MSE  (ref. Table-2) 

3. Gatza-Gatza 1.47726 1.38414 (6-4-1-1) 5 Minimum nodes 

4. Harring-Gatza 1.48217 1.29296 (6-5-1-1) 6 Inconsistent, highly skewed 
(ref. Table-2) 

5. tansig-Gatza 1.49737 1.31403 (6-4-2-1) 6 test MSE more consistent 
(ref. Table-2) 

6. Harring-Harring 1.49906 1.2084 (6-4-4-1) 8 Inconsistent, highly skewed 
(ref. Table-2) 

7. Gatza-Harring 1.50579 1.27253 (6-4-3-1) 7 More nodes, Inconsistent 
test MSE  (ref. Table-2)  

8. Gatza-tansig 1.5509 1.16184 (6-6-2-1) 8 More nodes 

9. tansig-Harring 1.60798 1.29852 (6-3-3-1) 6 High MSEs 

 
We now combine both train and test MSE by 

assigning weights to get a composite measure of MSE. 
Each weight (wi) strictly lies between 0 and 1. Further, 
the weight on test MSE will be greater or equal to the 
weight on train MSE. This is because test MSE is more 
important than train MSE while simulating any process 
using a particular trained and optimised architecture. 
Moreover, train MSE is more consistent than test MSE. 
We, thus, define a composite measure of MSE as. 

∑ =>≥>

+=

1,01

,)(*)(*

21

2
2

2
1

iwww

MSEtrainwMSEtestwMSEComposite ……(10) 

Using equation (6), we take five combinations of (w1, 
w2) for test and train MSE values listed in Table-3, and 
compute the composite MSE for each transfer function 
combination. The following table illustrates the 
composite MSE values and their averages and ranges for 
each transfer function combination. 
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       Table-5.  Comparison of Composite MSE for different weight combinations  

Weights: (w1, w2) Sl 
No. 

TF-
combina

tion 

test 
mse 

train 
mse (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) Average Range 

1. tansig-
tansig 

1.427 1.175 1.308 1.333 1.357 1.381 1.404 1.356  0.097 

2. Harring-
tansig 

1.447 1.210 1.334 1.358 1.380 1.403 1.425 1.380 0.091 

3. Gatza-
Gatza 

1.477 1.384 1.431 1.441 1.450 1.459 1.468 1.450  0.037 

4. Harring-
Gatza 

1.482 1.292 1.391 1.410 1.428 1.446 1.464 1.428  0.074 

5. tansig-
Gatza 

1.497 1.314 1.409 1.427 1.445 1.463 1.480 1.445  0.071 

6. Harring-
Harring 

1.499 1.208 1.362 1.390 1.418 1.446 1.473 1.418 0.111 

7. Gatza-
Harring 

1.505 1.272 1.394 1.417 1.440 1.462 1.484 1.439  0.090 

8. Gatza-
tansig 

1.550 1.161 1.370 1.408 1.445 1.481 1.516 1.444  0.146 

9. tansig-
Harring 

1.607 1.298 1.461 1.492 1.522 1.551 1.580 1.521  0.118 

 
The following table summarises the reasons for 

choice of optimum transfer function combination along 
with a particular architecture.  

The last column indicates the ranking for choice where 
rank-1 indicates the best choice. 

 
          Table-6.  Summary for choice of TF-Combinations 

Sl 
No. 

TF-combination architecture # hidden 
nodes 

Remarks Ranking       
(Optimum 

Choice) 

1. tansig-tansig (6-6-1-1) 7 test MSE most consistent (ref. 
Table-2) 3 

2. Harring-tansig (6-4-4-1) 8 More nodes, Inconsistent test 
MSE  (ref. Table-2) 5 

3. Gatza-Gatza (6-4-1-1) 5 Minimum nodes, composite 
MSE most consistent 2 

4. Harring-Gatza (6-5-1-1) 6 Inconsistent, highly skewed 
(ref. Table-2) 8 

5. tansig-Gatza (6-4-2-1) 6 
test MSE more consistent 
(ref. Table-2), composite 

MSE more consistent 
1 

6. Harring-Harring (6-4-4-1) 8 
Inconsistent, highly skewed 

test MSE  (ref. Table-2), 
more nodes 

9 

7. Gatza-Harring (6-4-3-1) 7 More nodes, Inconsistent test 
MSE  (ref. Table-2)  7 

8. Gatza-tansig (6-6-2-1) 8 More nodes, composite MSE  
inconsistent 4 

9. tansig-Harring (6-3-3-1) 6 High MSEs, composite MSE  
inconsistent 6 
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From the above table (Table-5), the following three 
transfer function combinations are selected for next 
phase of study.  

1. tansig-Gatza-purelin 
2. Gatza-Gatza-Purelin 
3. tansig-tansig-Purelin 
The tansig-tansig-purelin combination is chosen to 

compare the performance with other two combinations 
where Gatza’s desirability function is used as a transfer 
function in the neural network architecture. 

 
 
6.  SOME EXPERIMENTAL CASES 
 
Case-1. Normalization technique (data: Steel 

Rolling Process) 
The objective of investigation, using the non-

linearity and bounded property of Harrington’s 
desirability function, was to compare the performance 
of training when 

• normalization of input and output observations is 
done using desirability function instead of 
minimax normalization; and 

• normalization of input observations only is done 
using desirability function instead of minimax 
normalization 

The result on MSE values in both the cases, when 
desirability function was used for normalization, as 
explained above, was found inferior than the results in 
case of minimax normalization process. So, any 
comment on the betterment of normalization process 
using desirability function cannot be made at this point. 
The possible explanation could be that the data for both 
the responses (uniform elongation and Flow Stress) 
have been generated using linear equations except (see 
Section 4.0) one input variable which is inversely 
proportional to square of the response, hence minimax 
normalization (which is a linear transformation of the 
data) might be giving better result in terms of input-
output mapping. 

Case-2. Custom Network (data: Fermentation 
Process) 

The design of the feed forward network is as 
follows: 

For each input variable (node), it is connected to a 
single node only in the first hidden layer and in this 
layer desirability function is used as transfer function. 
Outputs from this hidden layer are fully connected to 
the next layer. The tan-sigmoid transfer function is used 
for the other layers. The architecture is shown in Figure-
4. 

 
Figure 4. Schematic Diagram of a Custom Network 

 
The normalization of the data is done using 

minimax normalization technique. The data represent 
six input variables and one response variable from 
fermentation process. 

The results of MSEs using the two important 
desirability functions through custom designed 
network are shown in Table-7. 

It is observed from the above table that the 

average performance in predicting the response from 
the custom designed network is better when 
Harrington’s desirability function is used than use of 
Gatza’s function. However, using tan-sigmoid as 
transfer function at the very first layer is giving better 
result than any of these desirability functions used. 
Further, as it appears, custom designed network is not 
giving better performance than the earlier findings. 



 

                                                         Vol.4, No. 1, 2010                                                 47

 
Table-7.  Comparison of MSEs based on desirability functions (Network: Custom) 
Desirability  
functions. Gatza Harrington tansig 

Train MSE Test MSE Train MSE Test MSE Train MSE Test MSE 
1.7163 1.5743 1.8032 1.6941 1.6623 1.7218 
1.7287 1.6305 1.8239 1.5926 1.6676 1.7294 
1.7751 1.6384 1.7484 1.5692 1.681 1.7502 
4.8824 4.3504 2.6521 2.1326 1.6697 1.734 
3.6456 3.0067 1.7028 1.5207 1.6718 1.7472 
4.8265 3.9674 1.9667 1.7946 1.7709 1.7988 
1.6399 1.4355 1.8806 1.7339 1.6576 1.7043 
7.8295 6.5411 2.0535 1.8708 1.6654 1.7338 
1.5695 1.3175 1.9116 1.7601 1.6923 1.7627 

6-1-1 

8.0943 7.0217 1.9391 1.857 1.6688 1.7357 
Average MSE 3.77078 3.24835 1.94819 1.75256 1.68074 1.74179 

1.8709 2.1231 4.1467 5.4755 4.3546 4.1116 
1.6348 1.8775 1.6233 2.0413 1.6686 1.7048 
1.6402 1.8771 1.701 2.0479 1.6751 1.6909 
5.0273 5.7502 1.612 2.0137 1.6434 1.7579 
3.0927 3.6219 1.6942 2.044 1.6619 1.7338 
5.0069 5.2639 1.6179 2.0431 1.6928 1.6866 
1.8931 2.1592 1.6354 2.0495 1.6778 1.7285 
3.5847 3.9352 1.7666 2.1393 1.7036 1.7487 
1.6538 1.917 1.6503 2.0957 1.6627 1.7232 

4-2-1 

14.263 19.977 1.7272 2.0838 1.6742 1.7275 
Average MSE 3.96674 4.85021 1.91746 2.40338 1.94147 1.96135 

 
Case-3. Composite Desirability (data: Steel 

Rolling Process) 
The approach adopted to incorporate the concept of 

composite desirability in the neural network architecture 
was thought as follows: 

Approach-A: 
Step-1. Generate the database based on simple 

linear regression equations between (X,Y); 
Step-2. Find out the desirability values for all the 

output variables, using desirability functions for each of 
the output variables; 

Step-3. Find out the composite desirability (D) 
after combining the desirability values for all the 
variables; 

Step-4. Train the architecture between (X,D); 
Step-5. Simulate the trained architecture; 
Step-6. Store predicted composite desirability 

values. 
Approach-B: 
Repeat from Step-1 to Step-3 as earlier.  
Step-4. Train the architecture between (X,Y); 
Step-5. Simulate the trained architecture; 
Step-6. Find out desirability of all variables of 

simulated output and then find out composite 
desirability by combining these;  

Step-7. Store this predicted composite desirability 
values. 

It is observed that the second approach performs 
better in terms of MSE of composite desirability values.  

 
 
7. CONCLUSION 
 
Optimization of product features necessarily needs 

optimization of the associated process parameters. 
Modeling of process data often becomes the pre-
requisite. This is done in many ways, however 
validation of the developed model is very much required 
in order to use it in future. The accuracy and precision 
for prediction and optimization depends on the 
relationship among them. Neural network technique 
helps in developing some complex relationship and also 
becomes helpful when nothing is known about the true 
behaviour of process parameters and product 
characteristics.  

The aim of this study is to utilize the properties of 
desirability functions into neural network architecture, 
hybridize them in different form and compare the 
efficiency of the model in terms of mean square error, a 
common important measure. The three objectives set in 
this respect were to use desirability functions as transfer 
functions of ANN, for normalizing of both input and/or 
output data and finally designing network based on the 
concept of composite desirability. Initially, two 
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important desirability functions, proposed by 
Harrington, 1965 and Gatza et al., 1972 are considered 
along with the most useful tan-sigmoidal transfer 
function. Altogether nine combinations of these three 
functions were tried on two hidden layered network 
consisting of six input variables and one output variable. 
Based on 21 different architectures used for each of the 
nine combinations, the three hybrid transfer function 
combinations, namely, tansig-Gatza, Gatza-Gatza and 
tansig-tansig are observed performing uniformly better 
than others based on consistent simulation performance, 
number of nodes and a new measure of composite MSE 
developed in this work.  

These findings definitely help us not to restrict 
ourselves in selecting the appropriate transfer functions 
from the available list but to think about developing 
some new ones depending on the process knowledge in 
order to increase the efficiency of network optimization. 
The other use of desirability function for normalization 
of input and/or output data, due to its bounded ness 
property along with its effect on non-linearity, is not 
really established through this study. However, some 
prior knowledge towards the nature of individual input-
output relationship based on the relevant process 
technology would definitely guide in using proper 

desirability function for normalization of data and 
accordingly it would increase the efficiency of the 
designed network. The concept of incorporating 
composite desirability into ANN architecture was also 
attempted.  

 
 
8.  FUTURE SCOPE 
 
The concept of composite desirability to convert 

multiple responses into a single response using various 
desirability functions with suitable properties can be 
used to extract the subject knowledge corresponding to 
complex input-output relationship through optimization 
of custom design neural network architecture. The 
solution space, thus obtained, can be searched for 
augmentation of process knowledge and compared with 
the results when the concept of composite desirability is 
not considered inside the architecture. The proper 
choice of desirability function into ANN architecture, 
instead of existing transfer functions, can always be a 
research topic of interest based on the knowledge of 
application domain. 

 
 

REFERENCES: 
 
[1] E.C. Harrington Jr., (1965), The desirability Function, Industrial Quality Control, April, pp. 494-498 
[2] P.E. Gatza and R.C. McMillan, (1972), The use of experimental design and computerized data analysis 

in Elastomer Development Studies, Division of Rubber Chemistry, American Chemical Society fall 
meeting, Paper No. 6, Cincinnati, Ohio, October, pp. 3-6 

[3] G.C. Derringer, and R. Suich, (1980), Simultaneous optimization of several response variables, Journal 
of Quality Technology, 12 (4), October, pp. 214-219 

[4] G.C. Derringer, (1994), A balancing act: optimizing a product’s properties, Quality Progress, June, pp. 
51-58 

[5] E. Del Castillo, D.C. Montgomery, D. McCarville, (1996), Modified desirability functions for multiple 
response optimization, Journal of Quality Technology, 28 (3), July, pp. 337-345 

[6] P. Das, (1999), Concurrent optimization of product performance characteristics using multiple 
desirability functions, Quality Engineering, 11 (3), March, pp. 365 – 368 

[7] S. Haykin, (1994), Neural Networks: A Comprehensive Foundation, McMillan, NY.  
[8] A. Nigrin, (1993), Neural Networks for Pattern Recognition, Cambridge, The MIT Press, MA. 
[9] J. M. Zurada, (1992), Introduction To Artificial Neural Systems, Boston: PWS Publishing Company 
[10] W. S. Sarle, (1994), Neural Networks and Statistical Methods, Proceedings of the Nineteenth Annual 

SAS Users Group International Conference 
[11] B. Lennox, G. A. Montague, H. G. Hidden, G. Kornfeld and P. R. Goulding, Process Monitoring of an 

Industrial Fed-batch Fermentation, Biotechnology and Bioengineering, 74(2), pp. 125-135 

 

 
 
 
 

 



 

                                                         Vol.4, No. 1, 2010                                                 49

ANNEXURE-1 
Architecture Optimisation: Summary of 10 Performances, each with Max. 600 Epochs - During Training 

 
Tansig-tansig Tansig-Harring Tansig-Gatza Harring-tansig Gatza-tansig Archit. 

Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev 
(1-1-1) 1.6539 0.007616 1.6534 0.005418 1.65014 0.02391 1.66927 0.036693 1.65779 0.000553
(2-1-1) 1.52737 0.036204 1.53893 0.084203 1.5145 0.080739 1.58961 0.06624 1.54484 0.05253 
(2 2 1) 1.50477 0.083695 1.47509 0.096426 1.49231 0.085659 1.53254 0.101602 1.48172 0.084215
(3 1 1) 1.47832 0.085654 1.42706 0.050091 1.4822 0.125549 1.42672 0.044472 1.44305 0.040671
(3 2 1) 1.37184 0.033442 1.41417 0.115184 1.41872 0.072895 1.38403 0.056685 1.38231 0.04835 
(3 3 1) 1.2969 0.034553 1.29852 0.088652 1.36483 0.078866 1.29928 0.054732 1.35219 0.081191
(4 1 1) 1.36144 0.038638 1.34912 0.116911 1.34598 0.095931 1.35264 0.120146 1.64135 0.79466 
(4 2 1) 1.28253 0.057825 1.31396 0.047102 1.31403 0.067475 1.34773 0.133379 1.32643 0.056028
(4 3 1) 1.25165 0.070452 1.20405 0.046767 1.258 0.113809 1.26781 0.115095 1.22998 0.066956
(4 4 1) 1.18743 0.10851 1.19568 0.053094 1.21239 0.095607 1.21092 0.111943 1.216 0.097706
(5 1 1) 1.22586 0.070926 1.2733 0.078813 1.28705 0.148693 1.55162 0.829883 1.30592 0.130974
(5 2 1) 1.22583 0.052856 1.26734 0.182024 1.29222 0.119169 1.20299 0.042025 1.28662 0.082107
(5 3 1) 1.16677 0.041517 1.13548 0.061679 1.25144 0.152122 1.18953 0.092048 1.21158 0.098547
(5 4 1) 1.09454 0.048083 1.043239 0.053095 1.19731 0.110398 1.130551 0.075256 1.10747 0.082092
(5 5 1) 1.088456 0.098459 1.06521 0.056843 1.109243 0.089118 1.036461 0.070395 1.121177 0.17125 
(6 1 1) 1.17579 0.039057 1.17482 0.075834 1.21515 0.040871 1.22418 0.091961 1.26836 0.114118
(6 2 1) 1.12903 0.122898 1.19407 0.112171 1.15826 0.057827 1.17782 0.079393 1.16184 0.061747
(6 3 1) 1.13017 0.123771 1.100941 0.069738 1.366544 0.898258 1.07496 0.073509 1.13014 0.091077
(6 4 1) 1.016114 0.032647 1.044961 0.056285 1.081238 0.131227 1.052597 0.056494 1.051807 0.059276
(6 5 1) 0.955314 0.051013 0.966864 0.067084 1.119848 0.142714 1.0138 0.047805 1.055918 0.072165
(6-6-1) 0.924183 0.048526 0.949349 0.109643 0.9676 0.08402 0.932088 0.070737 0.982669 0.082937
Total 26.04821 0.099123 26.08555 0.153031 27.099 1.013683 26.66715 0.822455 26.95916 0.779492

Average 1.240391 0.068703 1.242169 0.085365 1.290429 0.219706 1.269864 0.1979 1.28377 0.192662
 
 
During Simulation             

Tansig-tansig Tansig-Harring tansig-Gatza Harring-tansig Gatza-tansig Archit. 
Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev 

(1-1-1) 1.79412 0.035855 1.79932 0.021989 1.80718 0.094876 1.72976 0.1503 1.77741 0.000644 
(2-1-1) 1.6738 0.107443 1.74469 0.070149 1.76207 0.101467 1.61503 0.212051 1.6767 0.101328 
(2 2 1) 1.58308 0.120163 1.79176 0.391451 1.68142 0.133236 1.6358 0.182369 1.5909 0.131459 
(3 1 1) 1.64338 0.092449 1.68172 0.062914 1.63129 0.140613 1.4808 0.161981 1.6342 0.080472 
(3 2 1) 1.52405 0.088644 1.65427 0.080011 1.83794 0.803676 1.5171 0.132432 1.56747 0.118668 
(3 3 1) 1.58786 0.151726 1.60798 0.351827 1.72078 0.292496 1.46967 0.156173 1.86059 0.598503 
(4 1 1) 2.5202 2.83612 1.77586 0.215498 1.65633 0.175105 1.55801 0.193903 1.84186 0.884298 
(4 2 1) 1.5358 0.165272 1.85133 0.812811 1.49737 0.134533 1.55785 0.166689 142.4796 445.8181 
(4 3 1) 1.68178 0.208719 2.64551 3.526395 1.89181 0.956334 1.69276 0.46279 1.5843 0.228212 
(4 4 1) 1.70818 0.19962 1.68757 0.296838 1.93119 0.794307 1.44708 0.126231 1.60136 0.164088 
(5 1 1) 1.57843 0.217373 1.91448 0.928462 1.69869 0.585044 2.01444 0.920922 1.61467 0.220944 
(5 2 1) 1.59759 0.193367 1.84042 0.464668 1.64246 0.227197 1.64488 0.258372 1.59078 0.207762 
(5 3 1) 1.58813 0.08678 1.87915 0.429774 1.70924 0.523264 86.71595 268.9148 2.50102 2.71114 
(5 4 1) 1.73214 0.225651 1.86292 0.435516 2.70056 3.101447 295.5158 926.9995 1.73847 0.218009 
(5 5 1) 2.47858 1.743109 2.20497 1.094778 2.96986 2.554504 1.72822 0.380523 1.68606 0.202131 
(6 1 1) 1.42752 0.117683 2.02961 1.046245 1.81934 1.106753 1.5058 0.132459 2.15038 1.580127 
(6 2 1) 1.51109 0.201131 2.69697 3.49137 1.54966 0.427205 1.92919 0.924346 1.5509 0.196463 
(6 3 1) 2.14022 1.23203 9.12593 17.43431 2.22326 1.490677 1.57908 0.146258 2.38426 2.377771 
(6 4 1) 2.82942 2.44713 95.01722 292.4804 1.8977 0.655814 2.61237 1.465908 1.97761 0.627958 
(6 5 1) 2.17608 0.889523 2.14854 0.415095 3.65342 2.633132 1.77316 0.272712 1.93967 0.419887 
(6-6-1) 2.68212 2.187822 2.65217 1.710316 2.39642 0.794657 2.75434 2.527126 6.08367 12.42379 
Total 38.99357 24.54098 141.6124 85881.27 41.67799 30.81918 415.4771 931654.2 182.8318 198925.7 

Average 1.856837 1.081026 6.743447 63.94986 1.984666 1.211437 19.78462 210.6288 8.706278 97.32754 
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ANNEXURE-1 
Architecture Optimisation: Summary of 10 Performances, each with Max. 600 Epochs - During Training  
  

Harring-Gatza Gatza-Harring Harring-Harring Gatza-Gatza Archit. 
Average Std Dev Average Std Dev Average Std Dev Average Std Dev 

(1-1-1) 1.64406 0.028624 1.6576 9.43E-05 1.6512 0.013519 1.71571 0.000975 
(2-1-1) 1.54167 0.06735 1.52009 0.018907 1.59541 0.06727 1.57165 0.073608 
(2 2 1) 1.49972 0.077035 1.51023 0.102944 1.51355 0.092031 1.56245 0.104348 
(3 1 1) 1.47073 0.109483 2.50874 3.183885 1.51875 0.089011 1.72597 0.773743 
(3 2 1) 1.38063 0.104313 1.38186 0.025512 1.381688 0.064254 1.45367 0.101832 
(3 3 1) 1.40962 0.111811 1.41132 0.11104 1.33569 0.077955 1.39757 0.084701 
(4 1 1) 1.39957 0.121525 1.36603 0.045519 1.39667 0.138044 1.38414 0.08145 
(4 2 1) 1.37826 0.075506 1.36278 0.073004 1.27188 0.081232 1.38504 0.101492 
(4 3 1) 1.32789 0.107713 1.27253 0.061672 1.30288 0.144029 1.26026 0.083171 
(4 4 1) 1.25133 0.076646 1.20647 0.079341 1.2084 0.093962 1.21684 0.066215 
(5 1 1) 1.29296 0.064821 1.54572 0.821159 1.28414 0.121101 1.35105 0.13092 
(5 2 1) 1.29118 0.160678 1.30797 0.137624 1.23161 0.045493 1.26297 0.116049 
(5 3 1) 1.24853 0.137165 1.22805 0.12349 1.1886 0.112323 1.241 0.177901 
(5 4 1) 1.08713 0.048819 1.12329 0.056409 1.12797 0.074405 1.18108 0.097361 
(5 5 1) 1.070726 0.067511 1.080656 0.067228 1.174 0.065944 1.086535 0.123229 
(6 1 1) 1.50919 0.799605 1.24307 0.080182 1.16073 0.083584 1.215 0.055831 
(6 2 1) 1.17544 0.093662 1.20526 0.08434 1.20555 0.146108 1.168 0.109626 
(6 3 1) 1.13932 0.071081 1.17711 0.08853 1.16728 0.107586 1.26785 0.132116 
(6 4 1) 1.1779 0.144294 1.124575 0.06784 1.037812 0.049804 1.089968 0.062629 
(6 5 1) 1.023296 0.079417 1.020935 0.114337 0.96948 0.082777 1.025451 0.064879 
(6-6-1) 1.024254 0.140981 1.023457 0.090152 0.957907 0.059434 1.033701 0.073626 
Total 27.34341 0.840577 28.27774 10.94193 26.6812 0.178544 27.59591 0.79383 

Average 1.302067 0.200069 1.346559 0.721834 1.270533 0.092207 1.314091 0.194426 
 
During Simulation             

Harring-Gatza Gatza-Harring Harring-Harring Gatza-Gatza Archit. 
Average Std Dev Average Std Dev Average Std Dev Average Std Dev 

(1-1-1) 1.83105 0.113631 1.77718 0.000155 1.79995 0.048067 1.55068 0.00242 
(2-1-1) 1.62677 0.108356 1.63041 0.065118 1.72004 0.114497 1.62651 0.173778 
(2 2 1) 1.64411 0.120752 1.61398 0.148713 1.61479 0.150466 1.50813 0.085907 
(3 1 1) 1.70662 0.167144 2.75944 3.368228 1.71346 0.283899 1.77086 0.854165 
(3 2 1) 1.55193 0.136282 2.21778 1.362162 5.71189 12.35693 1.51213 0.067134 
(3 3 1) 1.54984 0.135119 1.5938 0.157583 1.50608 0.172659 3.5541 6.367145 
(4 1 1) 1.59159 0.133259 1.63323 0.208106 1.59772 0.142918 1.47726 0.07666 
(4 2 1) 4.86307 10.36302 1.59095 0.314773 131.0318 409.0824 226.8674 712.6834 
(4 3 1) 1.65978 0.247407 1.50579 0.112329 1.66517 0.234953 2.8911 2.898715 
(4 4 1) 1.9482 1.171356 1.73851 0.480238 1.49906 0.126229 1.61259 0.233081 
(5 1 1) 1.48217 0.075974 2.08073 1.11009 1.67537 0.324189 1.56248 0.132388 
(5 2 1) 1.65872 0.473937 3.12443 3.841518 1.67719 0.175141 1.70601 0.353686 
(5 3 1) 198.7505 623.5483 1.60784 0.197857 1.53736 0.26417 1.50819 0.109486 
(5 4 1) 3.63078 6.097375 3.20313 3.43954 4.57906 8.716803 1.5319 0.125497 
(5 5 1) 1.84106 1.27813 1.88455 0.973639 1.62951 0.19812 1.74669 0.590953 
(6 1 1) 1.81613 0.873089 1.58591 0.457015 1.56222 0.180238 1.52609 0.085554 
(6 2 1) 41.84766 127.3493 1.71315 0.453975 1983.051 6266.211 1.68628 0.2352 
(6 3 1) 117.4768 362.0016 1328.848 3756.236 10029.64 31707.23 1.54878 0.123011 
(6 4 1) 2.46994 1.865735 1.99608 0.504058 2.00548 1.134304 1.58463 0.327635 
(6 5 1) 1.90958 0.487121 2.07629 0.932769 2.61558 1.426372 2.74103 3.091956 
(6-6-1) 8.13851 17.5006 5.64163 9.994059 2.07854 0.972862 7.03821 16.05022 
Total 400.9948 536534.2 1371.822 14109451 12181.91 1.04E+09 268.551 508235.3 

Average 19.09499 159.8413 65.32488 819.682 580.0908 7053.475 12.78814 155.5689 
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