
International Journal for Quality Research 19(1) 85-100

ISSN 1800-6450

1
 Corresponding author: Vladimir Milićević

Email: milicevic.v@mfkv.kg.ac.rs

 85

Vladimir Milićević

 1

Igor Franc

Maja Lutovac

Banduka

Nemanja Zdravković

Nikola Dimitrijević

Article info:

Received 13.03.2024.

Accepted 10.09.2024.

DOI – 10.24874/IJQR19.01-06

SYMBOLIC ANALYSIS OF CLASSICAL

NEURAL NETWORKS FOR DEEP

LEARNING

Abstract: Deep learning is usually based on matrix computing

with a large number of hidden parameters that are not visible

outside the computing module. A deep learning algorithm can

be implemented in hardware or software as a non-linear

system. It is common for researchers to visualize a computing

module and monitor its hidden parameters. In this paper, we

propose, as a proof of concept, to start the system design by

drawing a single neuron. A more complex scheme of the neural

network is obtained by using the copy, move, and paste

commands for the simplest unit. The number of neurons and

layers can be chosen arbitrarily. When the scheme is complete,

implementation code is automatically executed using symbolic

inputs, system parameters, and symbolic activation functions.

This cannot be done manually because the system response is

extremely complex. With the symbolic expression of outputs

obtained from inputs and parameters, including pure symbolic

activation functions, many other properties can be derived in

closed form, such as classification with respect to a single

system parameter, activation function, or inputs. This unique

original method can help scientists and programmers design

complex machine learning algorithms and understand how

deep learning algorithms work. This paper presents several

examples with new achievements. The proposed algorithm can

be implemented in any programming language with symbolic

computing. Although it was developed for a classical neural

network, the same methodology can be used for any type of

neural network.

Keywords: artificial neural networks, closed-form

expression, feature extraction, machine learning.

1. Introduction

Machine learning, as a subfield of artificial

intelligence (AI), refers to computers

learning to do things on their own (Bernard,

2022). Machine learning (ML) is the core

of commonly used AI to derive complex

algorithms and methods for classification,

clustering and forecasting (Mukhamediev et

al, 2022). It has many applications in

several fields of basic science and

engineering that solve practical problems,

such as nonlinear problems, numerical

methods, analytical methods, error analysis

and mathematical models (Juraev &

Noeiaghdam, 2022). A review of a variety of

experiments on extracting structure from

machine learning data is presented in (He,

2023). Efficient continuous approximation

is proposed in (Yun, 2019). Some

Milićević et al., Symbolic analysis of classical neural networks for deep learning

86

applications with a nonlinear process have

demonstrated different neural network-

based models (Ren et al., 2022). A

theoretical framework based on non-linear

activation functions is explained in

(Gnjatović et al., 2022). A popular two-

layer activation function, a rectified linear

unit (ReLU), for neural networks is

introduced in (Liu & Cai, 2023). The trends

of the mathematical explanations for the

theoretical aspects of artificial neural

networks (ANNs), with special attention to

activation functions, can be used to derive

the defining features of each design

scenario (Zhao & Huang, 2022). Other

researchers have developed cost estimation

techniques using a statistical approach

(Refonaa et al., 2022). Graph representation

learning is a suitable learning model for

practical prediction tasks (Jegelka, 2022).

Symbolic regression, as the task of

predicting a mathematical expression, is a

difficult task; neural networks have been

used in prediction but are still less powerful

(Kamienny et al., 2022).

The biggest disadvantage of machine learning

is that most machine learning-based

algorithms cannot be explained. So far, AI has

successfully solved practical problems that

are intellectually difficult for humans but

relatively simple for computer calculations.

Success is possible if we use formal

mathematical rules. The challenge for AI is to

solve problems that are easy for humans but

formally hard for programs using formal

mathematical rules. Hierarchy allows a

computer to solve complex problems by

starting with simple solutions. A neural

network is deep when it has at least two

hidden layers. For this reason, artificial

intelligence based on neural networks with

two hidden layers is called deep learning

(Goodfellow et al., 2016). Hard-coded

knowledge is not adequate for artificial

intelligence systems; AI needs to be trained to

acquire its own knowledge from raw data

(Goodfellow et al., 2016). We can use

mathematical mapping to produce output

values from input values. A complex function

is defined from simpler functions. Some

authors noticed that simpler artificial

networks still can provide solutions as

biological neurons (Pavone & Plebe, 2021).

To solve decision-making problems in both

computer science and engineering, we can use

the Optimization Machine Learning Toolkit

as an open-source software package

incorporating neural networks (Ceccon et al.,

2022). Software tools can simplify the

training of neural networks using machine

learning to solve problems ranging from

simpler to more complex optimization

problems.

Increased interest in solving visual computing

problems using neural networks is evident

(Xie et al, 2022). Machine learning tools are

part of the Wolfram Language that performs

classification, regression, dimensionality

reduction and neural network processing. The

author of (Bernard, 2022) takes a "show,

don't tell" approach and we have used the

same examples to show how to use the

Wolfram Language (Wolfram, 2023). Using a

visual programming language (the

SchematicSolver application package

(Lutovac et al, 2016), which requires the

software Mathematica 9 (Wolfram, 2023)),

we can develop our own algorithms to better

understand the architecture of complex

networks. Mathematical education at the end

of high school should be sufficient to

understand mathematical content (Bernard,

2022). A visual programming interface or

GUI (graphical user interface) can provide

fast interactive design, symbolic processing,

exact simulation, verification and reporting

(Lutovac-Banduka et al., 2023; Raska et al.,

2024). This way, we skip the gap between

theory and practice in continuous-time

systems. A mathematical representation of a

complex system can be obtained by using

simpler parts. Automated symbolic

computations are also possible (Lutovac-

Banduka et al., 2023).

AI models as "black boxes" are often not

comprehensible (Setzu et al., 2021). Transfer

learning is a powerful approach that leverages

knowledge from one domain to enhance

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

87

learning in another domain; it can provide

practical insights for researchers and

practitioners interested in applying transfer

learning techniques (Ghelani, 2021). Even

though AI has good predictive performance, it

also has poor properties as there is a lack of

explanation for people to understand how it

works (Swamy et al., 2022). To date, there are

tools and case studies that aim to explain the

black boxes of AI in healthcare (Srinivasu et

al., 2022).

Deep learning using convolutional neural

networks (CNNs) is used to solve the problem

of brain tumor diagnosis; but its clinical

applications still face some critical issues (Xie

et al., 2022). The smart visualization of

medical image models is based on multi-

detector computed tomography, which can

provide a clearer view of changes in the brain

(Simović et al., 2022).

Trends in machine learning techniques have

been applied to robotic manipulation (Vuong,

2021). This can overcome the limitations

associated with a common user attempting to

access the deep knowledge of robot

programming. For simulation and remote

control of robotic manipulators, we can use

widespread and inexpensive devices and the

Android operating system (Lutovac Banduka,

2016). A review on deep learning-based smart

processing, robotic sensor networks and data

management algorithms is reported in

(Lăzăroiu et al., 2022). A simulator used to

verify motion commands and test new human

centrifuge algorithms is presented in (Lutovac

Banduka et al., 2013).

Analogous designs implementing machine

learning applications are explained in (Liu et

al., 2022). The design of analog circuits

requires a large amount of human knowledge

(Rojec et al., 2022). An example of using

deep learning as a subset of machine learning

is presented in (Lutovac-Banduka et al.,

2023). The application of using an artificial

intelligent method is described in (Thanoon,

2024).

The purpose of this paper is to explain

machine learning models using algorithm

visualization. The main goal of this work is to

present the final results as expressions in a

closed form in which developers can change

and monitor hidden parameters, input values,

or selection of proper activation function.

2. Materials

Deep learning involves learning using an

artificial neural network. Humans have about

one hundred billion biological neurons in their

brain and about ten thousand times more

connections. A neuron has its inputs , ,

..., , via input branches.

The neuron then calculates an output ,

which is sent to other neurons through tiny

intercellular connections.

Artificial neural networks use the same basic

principles but are much simpler than

biological neurons. For the given input values

 , , ..., , an artificial neuron has only one

output, whose value we can calculate

according to the following formula:

 () (1)

The system parameters, , , ..., ,

change during neuron operation and are

interpreted as the strengths of the connection

between neurons. They are called weights or

weight parameters. The parameter is called

the bias and is interpreted as the threshold at

which a neuron is activated. The nonlinear

function is called the activation function or

the transfer function.

An illustration of the calculation of an

artificial neuron (which gives the same

output expression as it theoretically should

be) is presented in Fig. 1 (drawn using

SchematicSolver ver. 2.3 (Lutovac et al.,

2014), which is written using the Wolfram

Language and Mathematica ver. 13

(Wolfram, 2023)).

Milićević et al., Symbolic analysis of classical neural networks for deep learning

88

Figure 1. Illustration of the computation

made by an artificial neuron

The first part is a linear combination of the

inputs, and then the nonlinearity is applied.

Nonlinearity allows neurons to model a

nonlinear system. Biological neurons are

either activated or not activated. Therefore, it

is beneficial to use some kind of activation

function. Artificial neurons either use a

logistic sigmoid function, a hyperbolic

tangent function or a Ramp function (rectified

linear unit, ReLU), which works pretty well in

deep neural networks (Bernard, 2022), as

shown in Fig. 2.

Figure 2. Classic activation function as a

rectified linear unit ReLU, a logistic sigmoid

σ(x), or a hyperbolic tangent function

tanh(x)

3. Methods

In Fig. 3, the architecture of an artificial

neuron is drawn, where the input signals ,

 , ..., are separated from the parameters

that are modified during the operation of the

neuron. Fig. 4 shows a block diagram of a

neuron that depends exclusively on the input

signals, and the parameters , , ..., are

listed as inputs through which the output is

calculated.

Figure 3. Classic artificial neuron with

memory elements

It is important to note that unlike linear

systems, multipliers with constant values are

not used because the parameters , , ...,

 , and are not constants. They are

modified during the operation of the neuron.

By connecting a large number of artificial

neurons, a network can be created. The circles

in this network represent numerical values

called activations. The linear combination of

the inputs and bias are passed through the

nonlinearity function. The simplest network

has two inputs and one output. The graph of

such a network is directed and acyclic, so the

output can be calculated simply by following

the arrows.

Each neuron has an input with its own weight

parameter and one bias parameter. For

training purposes, we can define a minimum

cost function. The architecture does not

change; only the numerical values of the

parameters (weights and biases) are changed.

A similar architecture is used with a pair of

neurons in the layers; each neuron in one

layer sends its output to each neuron in the

next layer.

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

89

Figure 4. Classic Classic artificial neuron -

simplified version

Let the network consist of several layers and

let there be four neurons in each layer. Four

input signals come to the first layer. The

output of each neuron generates only one

output, and since there are 4 neurons, 4 output

signals are generated. The output signals of

the first layer become the input signals for the

second layer, which also has 4 neurons and

generates 4 output signals. The output signals

of the second layer are the input signals of the

third layer, which also has 4 neurons with 4

output signals. The output signals of the third

layer are the outputs of the neural network.

The first and second layers are called hidden

layers because the outputs of the neurons in

these layers are not seen outside the network.

The number of input signals to the first layer

must not be greater than 4, and to ensure that

some of the 4 network inputs do not affect the

network outputs, the weight parameters are

set to 0 from the network inputs in the first

layer to the adders.

Assume that there are only two numerical

values as the inputs and the first hidden layer

generates four numerical values as the

outputs. Now, the second hidden layer has 4

numerical values as the inputs, and it

generates 4 output values which are the values

of the third-layer neurons. These four inputs

generate 4 output numerical values that

become the outputs of the neural network, and

therefore, the third layer is not a hidden layer

because the results are visible. The activation

function generates one of the 4 classes to

which the processing result belongs, and the

activation function is unambiguously mapped

to the outputs, that is, the ones that have all

positive results (all probabilities must be

positive), and the sum of all probabilities

(outputs) used as a nonlinear function of the

last layer must be 1 (sum of probabilities of

all classes must be 1). Such a network is used

to train a classifier. In our example, there are

four possible classes, and the output values

would then be the class probabilities. For a

regression task, you would have only one

output, which is the class that is most likely to

occur.

In our example, two hidden layers are

included, although there could be many more.

A network with at least two hidden layers is

called a deep network.

3.1 Matrix representation

As an illustration of how a neural network

works, we analyze a network that has 4

neurons in three layers as a minimal deep

learning network (the inputs are not layer, the

output layer is not hidden layer). Usually, a

mathematical approach is used to calculate

the matrices, which are easily implemented in

numerical programs. The input layer contains

4 weight coefficients for each neuron, so a

total of 2×4=8 parameters for the weights are

used to calculate the output values of the first

hidden layer. One bias parameter per output is

added. Visually, the weight parameters are

represented as a 4×4=16 matrix (for four

neurons, each with 4 weights), and a 1×4=4

matrix (for four neurons, each with one bias

parameter). For the input values, we use a

1×4=4 matrix with numerous values that can

be used as input signals to the network or as

output signals of the previous layer. The

matrix representation is as follows, which is

determined according to formula (Bernard,

2022):

Milićević et al., Symbolic analysis of classical neural networks for deep learning

90

 (2)

The matrix representations of parameters

and are:

 |

| |

| (3)

The matrix representations of the activation

function , inputs , and outputs of

one layer are:

 |

|, |

| (4)

3.2 Matrix computation

The activation function is chosen to be a

hyperbolic tangent. For only two inputs,

numerous values are arbitrarily chosen, while

the remaining two inputs are set to 0. All

parameters are obtained via a random number

generator. In order to always obtain the same

numerical value, the function SeedRandom

[123] is used. Now, the numerical values for

the first layer are rounded to 3 decimal places,

according to reference (Bernard, 2022):

 |

|, |

|, (5)

 |

|, |

| (6)

To make sure that the third and fourth inputs

do not affect the result, some weight

parameters are set to 0. Therefore, this is a

network with only two inputs.

The output values of the first layer are

represented as a matrix . These values

become the inputs for the next layer, so the

following values are obtained for the second

layer:

 |

|,

 |

| (7)

 |

|, |

| (8)

The output values of the second layer are

shown as the matrix . These values become

the inputs to the last layer, so the following

values are obtained for the last layer:

 |

|,

 |

| (9)

 |

|, |

| (10)

The output values of the last layer do not use

the hyperbolic tangent of the activation

function, but the so-called softmax function

we are using to calculate the probability of the

occurrence of an output:

, i={1, 2, 3, 4} (11)

The fourth outcome has a probability of

0.600, i.e., 60.0%, while the first and third

outcomes have a probability of 0.184 (18.4%)

and the second outcome has a probability of

0.031 (3.1%). All probabilities must be

positive, and the sum of all probabilities must

be 1 (the first decimal place may have a

difference due to rounding).

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

91

A classifier that has parameters, as in this

example, shows that the most likely result is

class 4. The weight parameters , , ...,

 , and the bias parameter change during

the operation of the neurons during the

testing phase. In total, in the analyzed

network with two hidden layers and one

output layer with 4 neurons, there are

3×4×4=48 weight parameters and 3×1×4=12

bias parameters, i.e., the analyzed network

has a total of 48+12=60 parameters, which

are changed during neural network

processing.

4. Results

In computing, it is common to use a matrix

data structure. It is even more common for

people to use an architectural sketch.

4.1 Symbolic computation

Firstly, we draw the architecture of one layer

consisting of four neurons using software

(Lutovac, et al., 2014), as shown in Fig. 5.

Figure 5. Classic artificial neural

network with a single layer: 4 inputs, 4

neurons in the middle stage, and 4 outputs

The inputs and outputs are drawn separately

for a neural network with one layer, as shown

in Fig. 5. Using one middle layer, the neural

network is obtained by joining the input, the

output and the one middle layer, as shown in

Fig. 6.

To draw a neural network with three layers,

an already-drawn middle layer, as shown in

Fig. 5, is used, which is copied three times to

the right with a raster of 13 (how wide the

base layer is), and the output layer is shifted

to the right by 3×13=39. The symbolic

parameter names and activation functions are

changed with each copy. The complete

scheme is obtained by connecting the inputs,

the outputs and all layers and is shown in Fig.

7.

It is important to note that the activation

function of the final layer is different, , so

that the output values are equal to the class

probabilities.

Figure 6. Classic artificial neural

network with one layer

Milićević et al., Symbolic analysis of classical neural networks for deep learning

92

Figure 7. Classic artificial neural

network with three layers

4.2 Symbolic analysis

By clicking on the button to implement the

schematic obtained from the image drawn

using SchematicSolver, an implementation

code is obtained, a small part of which is

shown in Fig. 8.

The symbolically derived expressions for the

four classes use almost 316KB as it is shown

in Fig. 9. Such a performance in the closed

form is not possible to derive manually. In

Fig. 10, it can be seen that the graph with all

levels is very complex. The symbolically

derived expressions can be used for further

analysis, which is not possible when using a

purely numerical approach. By changing the

symbolic values with the numerical

parameters from the matrix approach, the

same probabilities are obtained, and there is a

60.0% probability that the classification

number is four, as with matrix computing.

Figure 8. A small part of the symbolic

response of classic artificial neural network

with 3 layers

Figure 9. Tree graph with different levels at

different depths

Figure 10. Size of the tree graph

4.3 Symbolic computation

In the same way, a neural network with four

layers is obtained, of which three are hidden

layers. It has the same values for the

parameters as a network with two hidden

layers, but with the addition of randomly

generated values for newly added layer, a

probability of 63.8% is obtained for class 2:

 |

| (12)

The complexity of the closed-form final

expressions in symbolic notation is shown in

Fig. 11. This derivation exceeds manual

execution.

The symbolically obtained response of the

neural network enables further analysis

without the use of schematics. With 100,000

randomly generated parameters, the

probabilities for all outputs were determined,

as shown in Fig. 12.

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

93

Figure 11. The tree graph of classic artificial

neural network with 4 layers

Figure 12. The tree graph of classic artificial

neural network with 4 layers.

The mean probability is determined, as shown

in Fig. 13.

Figure 13. Mean value of probability

For the mean value, we derive an expression

in the closed form as follows:

 (13)

The most likely probability was calculated

when the maximum number of classes was

detected, which was a probability of 43.3%

when 800 cases were detected. For a value of

0.7071 in relation to the maximum range in

which the largest number of certain classes

was calculated, the range of probability was

between 34.7% to 54.4%. Half of all the

classes were detected within this range. It is

important to note that there cannot be a

probability of less than 25% when a class is

detected because at least one other class

would have a probability of more than 25%.

Each class was detected approximately

25,000 times, and no case was detected where

all classes were equally likely. In all cases, the

same input signal values were used ,

 , .

For all classes and all probabilities, all

parameter values are equally likely, that is,

there is no parameter value where the

probability of detecting one of the four classes

is more pronounced.

5. Application

The symbolic representation of a neural

network can be used for further analysis.

5.1 The influence of any parameter

We assume all parameters are frozen except

for the last layer. We can then set all

parameters to have the same values when

calculating the matrix. In that case, the

probability of the four outcomes is already

given by equation (11).

Suppose we would like to find how much the

outputs would change for different sets of

parameters that are in line with the neurons,

for example, the parameters and .

The class probabilities of all outputs as

functions of these parameters are shown in

Fig. 14 and Fig. 15.

The probability of the output class as a

function of the parameters and is

always higher than any other probability. This

means that with small changes in these

Milićević et al., Symbolic analysis of classical neural networks for deep learning

94

parameter values, the expected output is

always , assuming all other parameters are

frozen.

Figure 14. Hyperbolic tangent activation

function: probabilities of all outputs as a

function of

This property gives us the idea that the

parameters can be changed in larger steps.

The most expected value of a parameter can

be implemented with a small number of shifts

and add operations, and thus, we can replace

all multipliers with a few shifts and adders.

This is important for fast algorithms since the

inherent delay of a multiplier is reduced to

that of an adder element.

Figure 15. Hyperbolic tangent activation

function: probabilities of all outputs as a

function of .

The adaptation of the parameters as

multiplication constants during the training

phase can be replaced by shifts and two-input

sums during hardware implementations of

ANN (artificial neural network).

5.2 The role of the activation function

Again, we assume all parameters are frozen

except for the last layer. We can set all

parameters to have the same values when

calculating the matrix. The probability matrix

for the four outputs is different with the

logistic sigmoid σ(k) as the activation

function:

 |

| = |

| |

| (14)

Suppose we would like to find how much the

outputs change for different sets of

parameters that are in line with the neurons.

The class probabilities of all outputs as

functions of some parameters are shown in

Fig. 16 and Fig. 17.

Figure 16. Logistic sigmoid activation

function: probabilities of all outputs as a

function of

The probability of the output class , as a

function of the parameters and is

always less than any other probability. This

means that with small changes in these

parameter values, the expected output is not

 , assuming all other parameters are frozen.

It follows that the parameter can be

used to make the most expected class.

Otherwise, the output is the most

expected class.

Figure 17. Logistic sigmoid activation

function: probabilities of all outputs as a

function of

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

95

The only modification in the program is the

change in the activation function, and

everything else is the result of evaluating the

same matrix using the logistic sigmoid

activation function.

5.3 Training properties

Fig. 18 illustrates the class probabilities of all

outputs as functions of the input value

when using the hyperbolic tangent activation

function. For positive input values , the

probabilities are approximately constant and

the expected output of the class is ,

assuming all other parameters are frozen. In

this case, there is no need to change the

parameters.

Figure 18. Hyperbolic tangent activation

function: class probabilities of all outputs as

a function of

Fig. 19 shows the class probabilities of all

outputs as a function of the input value

when using the hyperbolic tangent activation

function. For positive input values , the

probabilities are approximately constant and

the expected class output is again ,

assuming all other parameters are frozen. In

this case, there is no need to change the

parameters.

Fig. 20 shows the class probabilities of all

outputs as a function of the input value

when using the logistic sigmoid activation

function. For this activation function, the

expected output of the class is no longer ,

assuming all other parameters are frozen. In

this case, there is no need to change the

parameters except to increase the probabilities

of other outputs.

Figure 19. Hyperbolic tangent activation

function: class probabilities of all outputs as

a function of

Figure 20. Logistic sigmoid activation

function: class probabilities of all outputs as

a function of

Fig. 21 illustrates the class probabilities as

functions of the input value when using

the logistic sigmoid activation function. In

this case, the probabilities of other outputs

can be increased by changing the parameters.

Figure 21. Logistic sigmoid activation

function: class probabilities of all outputs as

a function of

For positive and negative input values and

 , the probabilities are approximately

constant. Of course, the tree class

probabilities are in the 25% to 35% range.

Milićević et al., Symbolic analysis of classical neural networks for deep learning

96

It is important to note that the input values

can be in the value range of -5 to 5. In other

cases, the output value of each neuron, that is,

the input of any neuron in the hidden layers,

can be in the range of -1 to 1.

6. Discussion

The most popular approach to using artificial

neural networks (ANNs) and machine

learning (ML) is to use mathematical matrix

knowledge and black-box models.

Researchers with extensive mathematical

knowledge are familiar with such an approach

and do not need to use different methods.

However, researchers without extensive

mathematical knowledge and knowledge of

the matrix representation of black-box models

usually do not have the technical skills to

apply deep learning (DL) ANNs to solve

practical problems. Therefore, they need a

different approach. One such approach is

presented in this paper

Graphical programming is useful for non-

technical users as they can see the ANN

architecture’s component parts. Instead of

using a black-box model, a researcher can

visually identify the architecture of an ANN

and perform analysis to investigate the impact

of each constituent part of the ANN.

The proposed solution is based on symbolic

manipulations with symbolically defined

parameters of the system schema. The system

schema contains everything needed for a

different ANN presentation (graphical for

drawing scheme, mathematical for the closed-

form response of the system, programing for

setting programing code for software

implementation, embedded code for hardware

implementation, visualization of the plotting

the system response for numeric values). A

schematic view is not just a pictorial

representation of a system. By means of a

simple transformation, the system's response to

symbolic input values generates an output.

Another advantage is that this original method

generates a software or hardware

implementation. Since all system parameters

are defined as symbols, they can be

symbolically replaced by numbers at any time.

For example, to plot the response, we need

numerical values.

An ANN response may be too complex for

human derivation. It will be difficult to rewrite

such a response. Therefore, this original

method is a kind of knowledge-based system.

The complexity of the system can be increased

or simplified to better understand the properties

of the ANN. For example, in a tree-layered

ANN with four neurons in each layer, we can

freeze most of the 48 parameters and plot the

response as a function of a single parameter. If

the result is not satisfactory, we can choose

another activation function. As expected by

experts, the appropriate parameters and

activation function are used to obtain the

expected response of the ANN.

Although the higher programing language is

used, the same approach can be developed

using a more user-friendly programming

language.

The disadvantage of using ML as a black box

is overcome by designing a non-linear system

using visual programming. During the testing

or validation process, system parameters can be

viewed for verification purposes. The final

results, presented as closed-form expressions,

can be derived and optimized according to the

required task. Future development includes

developing a fully automated design based on

the required number of neurons per layer as

well as the number of layers. To the best of the

authors’ knowledge, there is no similar

approach in the literature.

7. Conclusion

An original algorithm for implementing

classical neural networks, as a concept of

proofs, is presented. This original method

provides a symbolic response that can be

easily transformed, for example, into a

numerical response for plotting. The

algorithm is developed using one of the best

software for symbolic computing and a

graphical user interface for drawing simple

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

97

constituent parts of systems. A more

complex system can be generated via visual

programming using the copy-move-paste

method. Future work is planned for a

different neural network structure and more

activation functions.

7.1 Supplementary Materials

Programs are available from

the corresponding author or

https://www.preprints.org/manuscript/20231

1.0446/v1.

The code is in the form of readable text with

the extension. nb. The first step is to set up a

working directory and import the knowledge

as a package or text file with .m extension.

The next few lines of the program tell how the

scheme is visible in the images. The inputs,

outputs and single-layer schemes are defined

as separate lists. Replacement rules are used

for drawings. The starting layer can be

translated and copied several times using the

Do command. Each symbol can be

represented by different mathematical

notations.

References:

Bernard, E. (2022). Introduction to machine learning. Champaign, IL: Wolfram Media.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., & Misener, R. (2022). OMLT:

Optimization & machine learning toolkit. Journal of Machine Learning Research, 23(1),

15829–15836. Retrieved from https://www.jmlr.org/papers/volume23/22-0277/22-0277.pdf

Ghelani, D. (2022). Explainable AI: Approaches to make machine learning models more

transparent and understandable for humans. International Journal of Computer Science and

Technology, 6(4), 45–53.

Gnjatović, M., Maček, N., Saračević, M., Adamović, S., Joksimović, D., & Karabašević, D.

(2022). Cognitively economical heuristic for multiple sequence alignment under

uncertainties. Axioms, 12(3), 1–15. https://doi.org/10.3390/axioms12010003

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT

Press.

He, Y. H. (2023). Machine-learning mathematical structures. International Journal of Data

Science and Mathematical Sciences, 1(1), 23–47. https://doi.org/10.48550/arXiv.2101.0631

Jegelka, S. (2022). Theory of graph neural networks: Representation and learning. In

Proceedings of the International Congress of Mathematicians (virtual event, originally

planned Saint Petersburg, Russia), Helsinki, Finland, July 6–14.

https://doi.org/10.48550/arXiv.2204.07697

Juraev, D., & Noeiaghdam, S. (2022). Modern problems of mathematical physics and their

applications. Axioms, 11(2), 1–6. https://doi.org/10.3390/axioms11020045

 Kamienny, P. A., d’Ascoli, S., Lampe, G., & Charton, F. (2022). End-to-end symbolic

regression with transformers. In Proceedings of the 36th Conference on Neural Information

Processing Systems (NeurIPS 2022), New Orleans, USA, November 28–December 9.

Advances in Neural Information Processing Systems, 35, 10269–10281.

Lăzăroiu, G., Adronie, M., Iatagan, M., Gaemanu, M., Stefanescu, R., & Dijmarescu, I. (2022).

Deep learning-assisted smart process planning, robotic wireless sensor networks, and

geospatial big data management algorithms in the Internet of Manufacturing Things. Internet

of Manufacturing Things, 11(5), 1–26. https://doi.org/10.3390/ijgi11050277

Liu, M., & Cai, Z. (2023). Adaptive two-layer ReLU neural network: II. Ritz approximation to

elliptic PDEs. Computers & Mathematics with Applications, 113, 103–116.

https://doi.org/10.1016/j.camwa.2022.03.010

https://www.jmlr.org/papers/volume23/22-0277/22-0277.pdf
https://doi.org/10.3390/axioms12010003
https://doi.org/10.48550/arXiv.2101.0631
https://doi.org/10.48550/arXiv.2204.07697
https://doi.org/10.3390/ijgi11050277
https://doi.org/10.1016/j.camwa.2022.03.010

Milićević et al., Symbolic analysis of classical neural networks for deep learning

98

Liu, S. C., Strachan, J. P., & Basu, A. (2022). Prospects for analog circuits in deep networks. In

P. Harpe, K. Makinwa, & K. Baschirotto (Eds.), Advances in analog circuit design: Analog

circuits for machine learning, current/voltage/temperature sensors, and high-speed

communication (Vol. 1, pp. 49–61). Springer: Heidelberg, Germany. Presented at the

Workshop AACD 2021. https://doi.org/10.48550/arXiv.2106.12444

Lutovac Banduka, M. (2016). Robotics first: A mobile environment for robotics education. The

International Journal of Engineering Education, 32(2A), 818–829.

Lutovac, M., Tosic, D., & Evans, B. (2016). SchematicSolver, Mathematica application

package: Symbolic signal processing, software implementation, mouse-driven interactive

drawing tool. Retrieved from https://www.wolfram.com/products/

applications/schematicsolver

Lutovac-Banduka, M., Kvrgić, V., Ferenc, G., Dimić, Z., & Vidaković, J. (2013). 3D simulator

for human centrifuge motion testing and verification. Presented at the Mediterranean

Conference on Embedded Computing, Budva, Montenegro, June 15–20.

https://doi.org/10.1109/MECO.2013.6601345

Lutovac-Banduka, M., Milošević, D., Cen, Y., Kar, A., & Mladenović, V. (2023). Graphical

user interface for design, analysis, validation, and reporting of continuous-time systems

using Wolfram language. Journal of Circuits, Systems and Computers, 32(14), Article

2350244. https://doi.org/10.1142/S0218126623502444

Lutovac-Banduka, M., Simović, A., Orlić, V., & Stevanović, A. (2023). Dissipation

minimization of two-stage amplifier using deep learning. Serbian Journal of Electrical

Engineering, 20(2), 129–145. https://doi.org/10.2298/SJEE2302129L

Mukhamediev, R., Popova, Y., Kuchin, Y., Zaitseva, E., Kalimodayev, A., Symagulov, A., ...

Yelis, M. (2022). Review of artificial intelligence and machine learning technologies:

Classification, restrictions, opportunities and challenges. Mathematics, 10(15), 1–25, Article

2552. https://doi.org/10.3390/math10152552

Pavone, A., & Plebe, A. (2021). How neurons in deep models relate with neurons in the brain.

Algorithms, 14, 1–15, Article 272. https://doi.org/10.3390/a14090272

Raska, P., Ulrych, Z., Baloun, J., Malaga, M., & Lenc, L. (2024). Using adaptive neural

networks for optimising discrete event simulation. International Journal of Simulation

Modelling, 23(2), 227–238. https://doi.org/10.2507/IJSIMM23-2-678

Refonaa, J., Huy, D. T. N., Trung, N. D., Thuc, H. V., Raj, R., Haq, M. A., & Kumar, A.

(2022). Probabilistic methods and neural networks in structural engineering. International

Journal of Advanced Manufacturing Technology, 125(3–4), 1–9.

https://doi.org/10.1007/s00170-022-09335-5

Ren, Y. M., Alhajeri, M. S., Luo, J., Chen, S., Abdullah, F., Wu, Z., & Christofides, P. D.

(2022). A tutorial review of neural network modeling approaches for model predictive

control. Computers & Chemical Engineering, 165, 1–71, Article 107956.

Rojec, Ž., Fajfar, I., & Burmen, Á. (2022). Evolutionary synthesis of failure-resilient analog

circuits. Mathematics, 10(1), 1–20, Article 156. https://doi.org/10.3390/math10010156

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., & Giannotti, F. (2021).

GLocalX: From local to global explanations of black box AI models. Artificial Intelligence,

294, 1–15, Article 103457. https://doi.org/10.1016/j.artint.2021.103457

Simović, A., Banduka, M. L., Lekić, S., & Kuleto, V. (2022). Smart visualization of medical

images as a tool in the function of education in neuroradiology. Diagnostics, 12, 1–19,

Article 3208. https://doi.org/10.3390/diagnostics12123208

https://doi.org/10.48550/arXiv.2106.12444
https://www.wolfram.com/products/applications/schematicsolver
https://www.wolfram.com/products/applications/schematicsolver
https://doi.org/10.1007/s00170-022-09335-5

International Journal for Quality Research, 19(1), 85–100, 2025, doi: 10.24874/IJQR19.01-06

99

Srinivasu, P. N., Sandhya, N., & Jhaveri, R. H. (2022). From black-box to explainable AI in

healthcare: Existing tools and case studies. Mobile Information Systems, 2022, 1–20, Article

8167821. https://doi.org/10.1155/2022/8167821

Swamy, V., Radmehr, B., Krco, N., Marras, M., & Kaser, T. (2022). Evaluating the explainers:

Black-box explainable machine learning for student success prediction in MOOCs.

Presented at the 15th International Conference on Educational Data Mining, Durham,

England, July 24–27.

Thanoon, M. I. (2024). Artificial intelligence-based smart class attendance system: An IoT

infrastructure. International Journal for Quality Research, 18(1), 187–198.

https://doi.org/10.24874/IJQR18.01-12

Vuong, Q. (2021). Machine learning for robotic manipulation. arXiv Preprint, arXiv-

2101.00755, 1–15. https://doi.org/10.48550/arXiv.2101.00755

Wolfram, S. (2023). An elementary introduction to the Wolfram language (3rd ed.).

Champaign, IL: Wolfram Media.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., ... Sridhar, S. (2022). Neural

fields in visual computing and beyond. State of the Art Report, 41(2), 1–36.

https://doi.org/10.1111/cgf.14505

Xie, Y., Zaccagna, F., Rundo, L., Testa, C., Agati, R., Lodi, R., ... Tonon, C. (2022).

Convolutional neural network techniques for brain tumor classification (from 2015 to 2022):

Review, challenges, and future perspectives. Diagnostics, 12(8), 1–46, Article 1850.

https://doi.org/10.3390/diagnostics12081850

Yun, B. I. (2019). A neural network approximation based on a parametric sigmoidal function.

Mathematics, 7(3), 1–12, Article 262. https://doi.org/10.3390/math7030262

Zhao, F., & Huang, S. L. (2022). On the universally optimal activation function for a class of

residual neural networks. Applied Mathematics, 2(4), 574–584.

https://doi.org/10.3390/appliedmath2040033

Vladimir Milićević
Faculty of Mechanical and Civil

Engineering in Kraljevo, University of

Kragujevac,

Kraljevo, Serbia

milicevic.v@mfkv.kg.ac.rs

ORCID 0000-0002-5587-2717

 Igor Franc
Faculty of Mechanical and Civil

Engineering in Kraljevo, University of

Kragujevac,

Kraljevo, Serbia

franc.i@mfkv.kg.ac.rs

ORCID 0009-0000-4609-1081

Maja Lutovac Banduka
RT-RK LLC (former Department of

RT-RK Institute, Computer Based

Systems), Belgrade, Serbia

maja.lutovac-banduka@rt-rk-com

ORCID 0000-0003-4446-706X

 Nemanja Zdravković
Belgrade Metropolitan University,

Belgrade, Serbia

nemanja.zdravkovic@metropolitan.ac.rs

ORCID 0000-0002-2631-6308

Nikola Dimitrijević
Belgrade Metropolitan University,

Belgrade, Serbia

nikola.dimitrijevic@metropolitan.ac.rs

ORCID 0000-0002-6595-9277

https://doi.org/10.48550/arXiv.2101.00755
https://doi.org/10.1111/cgf.14505
https://doi.org/10.3390/appliedmath2040033

Milićević et al., Symbolic analysis of classical neural networks for deep learning

100

