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SYMBOLIC ANALYSIS OF CLASSICAL 

NEURAL NETWORKS FOR DEEP 

LEARNING 

 
Abstract: Deep learning is usually based on matrix computing 

with a large number of hidden parameters that are not visible 

outside the computing module. A deep learning algorithm can 

be implemented in hardware or software as a non-linear 

system. It is common for researchers to visualize a computing 

module and monitor its hidden parameters. In this paper, we 

propose, as a proof of concept, to start the system design by 

drawing a single neuron. A more complex scheme of the neural 

network is obtained by using the copy, move, and paste 

commands for the simplest unit. The number of neurons and 

layers can be chosen arbitrarily. When the scheme is complete, 

implementation code is automatically executed using symbolic 

inputs, system parameters, and symbolic activation functions. 

This cannot be done manually because the system response is 

extremely complex. With the symbolic expression of outputs 

obtained from inputs and parameters, including pure symbolic 

activation functions, many other properties can be derived in 

closed form, such as classification with respect to a single 

system parameter, activation function, or inputs. This unique 

original method can help scientists and programmers design 

complex machine learning algorithms and understand how 

deep learning algorithms work. This paper presents several 

examples with new achievements. The proposed algorithm can 

be implemented in any programming language with symbolic 

computing. Although it was developed for a classical neural 

network, the same methodology can be used for any type of 

neural network. 

Keywords: artificial neural networks, closed-form 

expression, feature extraction, machine learning.   

 

 

1. Introduction  
 

Machine learning, as a subfield of artificial 

intelligence (AI), refers to computers 

learning to do things on their own (Bernard, 

2022). Machine learning (ML) is the core 

of commonly used AI to derive complex 

algorithms and methods for classification, 

clustering and forecasting (Mukhamediev et 

al, 2022). It has many applications in 

several fields of basic science and 

engineering that solve practical problems, 

such as nonlinear problems, numerical 

methods, analytical methods, error analysis 

and mathematical models (Juraev & 

Noeiaghdam, 2022). A review of a variety of 

experiments on extracting structure from 

machine learning data is presented in (He, 

2023). Efficient continuous approximation 

is proposed in (Yun, 2019). Some 
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applications with a nonlinear process have 

demonstrated different neural network-

based models (Ren et al., 2022). A 

theoretical framework based on non-linear 

activation functions is explained in 

(Gnjatović et al., 2022). A popular two-

layer activation function, a rectified linear 

unit (ReLU), for neural networks is 

introduced in (Liu & Cai, 2023). The trends 

of the mathematical explanations for the 

theoretical aspects of artificial neural 

networks (ANNs), with special attention to 

activation functions, can be used to derive 

the defining features of each design 

scenario (Zhao & Huang, 2022). Other 

researchers have developed cost estimation 

techniques using a statistical approach 

(Refonaa et al., 2022). Graph representation 

learning is a suitable learning model for 

practical prediction tasks (Jegelka, 2022). 

Symbolic regression, as the task of 

predicting a mathematical expression, is a 

difficult task; neural networks have been 

used in prediction but are still less powerful 

(Kamienny et al., 2022). 

The biggest disadvantage of machine learning 

is that most machine learning-based 

algorithms cannot be explained. So far, AI has 

successfully solved practical problems that 

are intellectually difficult for humans but 

relatively simple for computer calculations. 

Success is possible if we use formal 

mathematical rules. The challenge for AI is to 

solve problems that are easy for humans but 

formally hard for programs using formal 

mathematical rules. Hierarchy allows a 

computer to solve complex problems by 

starting with simple solutions. A neural 

network is deep when it has at least two 

hidden layers. For this reason, artificial 

intelligence based on neural networks with 

two hidden layers is called deep learning 

(Goodfellow et al., 2016). Hard-coded 

knowledge is not adequate for artificial 

intelligence systems; AI needs to be trained to 

acquire its own knowledge from raw data 

(Goodfellow et al., 2016). We can use 

mathematical mapping to produce output 

values from input values. A complex function 

is defined from simpler functions. Some 

authors noticed that simpler artificial 

networks still can provide solutions as 

biological neurons (Pavone & Plebe, 2021). 

To solve decision-making problems in both 

computer science and engineering, we can use 

the Optimization Machine Learning Toolkit 

as an open-source software package 

incorporating neural networks (Ceccon et al., 

2022). Software tools can simplify the 

training of neural networks using machine 

learning to solve problems ranging from 

simpler to more complex optimization 

problems. 

Increased interest in solving visual computing 

problems using neural networks is evident 

(Xie et al, 2022). Machine learning tools are 

part of the Wolfram Language that performs 

classification, regression, dimensionality 

reduction and neural network processing. The 

author of (Bernard, 2022) takes a "show, 

don't tell" approach and we have used the 

same examples to show how to use the 

Wolfram Language (Wolfram, 2023). Using a 

visual programming language (the 

SchematicSolver application package 

(Lutovac et al, 2016), which requires the 

software Mathematica 9 (Wolfram, 2023)), 

we can develop our own algorithms to better 

understand the architecture of complex 

networks. Mathematical education at the end 

of high school should be sufficient to 

understand mathematical content (Bernard, 

2022). A visual programming interface or 

GUI (graphical user interface) can provide 

fast interactive design, symbolic processing, 

exact simulation, verification and reporting 

(Lutovac-Banduka et al., 2023; Raska et al., 

2024). This way, we skip the gap between 

theory and practice in continuous-time 

systems. A mathematical representation of a 

complex system can be obtained by using 

simpler parts. Automated symbolic 

computations are also possible (Lutovac-

Banduka et al., 2023). 

AI models as "black boxes" are often not 

comprehensible (Setzu et al., 2021). Transfer 

learning is a powerful approach that leverages 

knowledge from one domain to enhance 
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learning in another domain; it can provide 

practical insights for researchers and 

practitioners interested in applying transfer 

learning techniques (Ghelani, 2021). Even 

though AI has good predictive performance, it 

also has poor properties as there is a lack of 

explanation for people to understand how it 

works (Swamy et al., 2022). To date, there are 

tools and case studies that aim to explain the 

black boxes of AI in healthcare (Srinivasu et 

al., 2022). 

Deep learning using convolutional neural 

networks (CNNs) is used to solve the problem 

of brain tumor diagnosis; but its clinical 

applications still face some critical issues (Xie 

et al., 2022). The smart visualization of 

medical image models is based on multi-

detector computed tomography, which can 

provide a clearer view of changes in the brain 

(Simović et al., 2022). 

Trends in machine learning techniques have 

been applied to robotic manipulation (Vuong, 

2021). This can overcome the limitations 

associated with a common user attempting to 

access the deep knowledge of robot 

programming. For simulation and remote 

control of robotic manipulators, we can use 

widespread and inexpensive devices and the 

Android operating system (Lutovac Banduka, 

2016). A review on deep learning-based smart 

processing, robotic sensor networks and data 

management algorithms is reported in 

(Lăzăroiu et al., 2022). A simulator used to 

verify motion commands and test new human 

centrifuge algorithms is presented in (Lutovac 

Banduka et al., 2013). 

Analogous designs implementing machine 

learning applications are explained in (Liu et 

al., 2022). The design of analog circuits 

requires a large amount of human knowledge 

(Rojec et al., 2022). An example of using 

deep learning as a subset of machine learning 

is presented in (Lutovac-Banduka et al., 

2023). The application of using an artificial 

intelligent method is described in (Thanoon, 

2024).   

 

 

The purpose of this paper is to explain 

machine learning models using algorithm 

visualization. The main goal of this work is to 

present the final results as expressions in a 

closed form in which developers can change 

and monitor hidden parameters, input values, 

or selection of proper activation function.  

 

2. Materials 
 

Deep learning involves learning using an 

artificial neural network. Humans have about 

one hundred billion biological neurons in their 

brain and about ten thousand times more 

connections. A neuron has its inputs   ,   , 

...,   , via input branches.  

The neuron then calculates an output   , 

which is sent to other neurons through tiny 

intercellular connections. 

Artificial neural networks use the same basic 

principles but are much simpler than 

biological neurons. For the given input values 

  ,   , ...,   , an artificial neuron has only one 

output, whose value we can calculate 

according to the following formula:  

    (                   )     (1) 

The system parameters,   ,   , ...,   , 

change during neuron operation and are 

interpreted as the strengths of the connection 

between neurons. They are called weights or 

weight parameters. The parameter    is called 

the bias and is interpreted as the threshold at 

which a neuron is activated. The nonlinear 

function   is called the activation function or 

the transfer function. 

An illustration of the calculation of an 

artificial neuron (which gives the same 

output expression as it theoretically should 

be) is presented in Fig. 1 (drawn using 

SchematicSolver ver. 2.3 (Lutovac et al., 

2014), which is written using the Wolfram 

Language and Mathematica ver. 13 

(Wolfram, 2023)). 
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Figure 1. Illustration of the computation 

made by an artificial neuron 

 

The first part is a linear combination of the 

inputs, and then the nonlinearity   is applied. 

Nonlinearity allows neurons to model a 

nonlinear system. Biological neurons are 

either activated or not activated. Therefore, it 

is beneficial to use some kind of activation 

function. Artificial neurons either use a 

logistic sigmoid function, a hyperbolic 

tangent function or a Ramp function (rectified 

linear unit, ReLU), which works pretty well in 

deep neural networks (Bernard, 2022), as 

shown in Fig. 2.  

 

 
 

Figure 2. Classic activation function as a 

rectified linear unit ReLU, a logistic sigmoid 

σ(x), or a hyperbolic tangent function 

tanh(x) 

 

3. Methods 

 
In Fig. 3, the architecture of an artificial 

neuron is drawn, where the input signals   , 

  , ...,    are separated from the parameters 

that are modified during the operation of the 

neuron. Fig. 4 shows a block diagram of a 

neuron that depends exclusively on the input 

signals, and the parameters   ,   , ...,    are 

listed as inputs through which the output is 

calculated.  

 

 
Figure 3. Classic artificial neuron with 

memory elements 

 

It is important to note that unlike linear 

systems, multipliers with constant values are 

not used because the parameters   ,   , ..., 

  , and    are not constants. They are 

modified during the operation of the neuron.  

By connecting a large number of artificial 

neurons, a network can be created. The circles 

in this network represent numerical values 

called activations. The linear combination of 

the inputs and bias are passed through the 

nonlinearity function. The simplest network 

has two inputs and one output. The graph of 

such a network is directed and acyclic, so the 

output can be calculated simply by following 

the arrows. 

Each neuron has an input with its own weight 

parameter and one bias parameter. For 

training purposes, we can define a minimum 

cost function. The architecture does not 

change; only the numerical values of the 

parameters (weights and biases) are changed. 

A similar architecture is used with a pair of 

neurons in the layers; each neuron in one 

layer sends its output to each neuron in the 

next layer. 
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Figure 4. Classic Classic artificial neuron - 

simplified version 

 
Let the network consist of several layers and 

let there be four neurons in each layer. Four 

input signals come to the first layer. The 

output of each neuron generates only one 

output, and since there are 4 neurons, 4 output 

signals are generated. The output signals of 

the first layer become the input signals for the 

second layer, which also has 4 neurons and 

generates 4 output signals. The output signals 

of the second layer are the input signals of the 

third layer, which also has 4 neurons with 4 

output signals. The output signals of the third 

layer are the outputs of the neural network. 

The first and second layers are called hidden 

layers because the outputs of the neurons in 

these layers are not seen outside the network. 

The number of input signals to the first layer 

must not be greater than 4, and to ensure that 

some of the 4 network inputs do not affect the 

network outputs, the weight parameters are 

set to 0 from the network inputs in the first 

layer to the adders. 

Assume that there are only two numerical 

values as the inputs and the first hidden layer 

generates four numerical values as the 

outputs. Now, the second hidden layer has 4 

numerical values as the inputs, and it 

generates 4 output values which are the values 

of the third-layer neurons. These four inputs 

generate 4 output numerical values that 

become the outputs of the neural network, and 

therefore, the third layer is not a hidden layer 

because the results are visible. The activation 

function generates one of the 4 classes to 

which the processing result belongs, and the 

activation function is unambiguously mapped 

to the outputs, that is, the ones that have all 

positive results (all probabilities must be 

positive), and the sum of all probabilities 

(outputs) used as a nonlinear function of the 

last layer must be 1 (sum of probabilities of 

all classes must be 1). Such a network is used 

to train a classifier. In our example, there are 

four possible classes, and the output values 

would then be the class probabilities. For a 

regression task, you would have only one 

output, which is the class that is most likely to 

occur. 

In our example, two hidden layers are 

included, although there could be many more. 

A network with at least two hidden layers is 

called a deep network. 

3.1 Matrix representation 

 

As an illustration of how a neural network 

works, we analyze a network that has 4 

neurons in three layers as a minimal deep 

learning network (the inputs are not layer, the 

output layer is not hidden layer). Usually, a 

mathematical approach is used to calculate 

the matrices, which are easily implemented in 

numerical programs. The input layer contains 

4 weight coefficients for each neuron, so a 

total of 2×4=8 parameters for the weights are 

used to calculate the output values of the first 

hidden layer. One bias parameter per output is 

added. Visually, the weight parameters are 

represented as a 4×4=16 matrix (for four 

neurons, each with 4 weights), and a 1×4=4 

matrix (for four neurons, each with one bias 

parameter). For the input values, we use a 

1×4=4 matrix with numerous values that can 

be used as input signals to the network or as 

output signals of the previous layer. The 

matrix representation is as follows, which is 

determined according to formula (Bernard, 

2022):  
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                                             (2) 

The matrix representations of parameters   

and   are:  

  |

         

          

          

          

|    |

  

  

  

  

|    (3) 

 

The matrix representations of the activation 

function     , inputs  , and outputs   of 

one layer are: 

                 |

  

  

  
  

|,    |

  

  

  
  

|    (4) 

3.2 Matrix computation 

 

The activation function is chosen to be a 

hyperbolic tangent. For only two inputs, 

numerous values are arbitrarily chosen, while 

the remaining two inputs are set to 0. All 

parameters are obtained via a random number 

generator. In order to always obtain the same 

numerical value, the function SeedRandom 

[123] is used. Now, the numerical values for 

the first layer are rounded to 3 decimal places, 

according to reference (Bernard, 2022):  

  |

             
            
              
              

|,   |

      
     
      
     

|,    (5) 

                  

                  |

   
   
 
 

|,    |

        
        
         
         

|                  (6) 

To make sure that the third and fourth inputs 

do not affect the result, some weight 

parameters are set to 0. Therefore, this is a 

network with only two inputs.  

The output values of the first layer are 

represented as a matrix  . These values 

become the inputs for the next layer, so the 

following values are obtained for the second 

layer: 

  |

                       
                       
                       
                      

|, 

                               |

      
      
     
     

|                            (7) 

 

        |

        
        
         
         

|,   |

         

        

         
         

|      (8) 

The output values of the second layer are 

shown as the matrix  . These values become 

the inputs to the last layer, so the following 

values are obtained for the last layer:   

  |

                      
                    
                       
                       

|, 

                            |

      
      
      
      

|                      (9) 

 

           |

          
        
         
         

|,   |

     
     
     
     

|        (10) 

The output values of the last layer do not use 

the hyperbolic tangent of the activation 

function, but the so-called softmax function 

we are using to calculate the probability of the 

occurrence of an output:   

        
   

               
, i={1, 2, 3, 4}    (11) 

The fourth outcome has a probability of 

0.600, i.e., 60.0%, while the first and third 

outcomes have a probability of 0.184 (18.4%) 

and the second outcome has a probability of 

0.031 (3.1%). All probabilities must be 

positive, and the sum of all probabilities must 

be 1 (the first decimal place may have a 

difference due to rounding). 
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A classifier that has parameters, as in this 

example, shows that the most likely result is 

class 4. The weight parameters   ,   , ..., 

  , and the bias parameter    change during 

the operation of the neurons during the 

testing phase. In total, in the analyzed 

network with two hidden layers and one 

output layer with 4 neurons, there are 

3×4×4=48 weight parameters and 3×1×4=12 

bias parameters, i.e., the analyzed network 

has a total of 48+12=60 parameters, which 

are changed during neural network 

processing. 

 

4. Results 
 

In computing, it is common to use a matrix 

data structure. It is even more common for 

people to use an architectural sketch. 

4.1 Symbolic computation 

 

Firstly, we draw the architecture of one layer 

consisting of four neurons using software 

(Lutovac, et al., 2014), as shown in Fig. 5.  

 
Figure 5. Classic artificial neural 

network with a single layer: 4 inputs, 4 

neurons in the middle stage, and 4 outputs 

 

The inputs and outputs are drawn separately 

for a neural network with one layer, as shown 

in Fig. 5. Using one middle layer, the neural 

network is obtained by joining the input, the 

output and the one middle layer, as shown in 

Fig. 6. 

To draw a neural network with three layers, 

an already-drawn middle layer, as shown in 

Fig. 5, is used, which is copied three times to 

the right with a raster of 13 (how wide the 

base layer is), and the output layer is shifted 

to the right by 3×13=39. The symbolic 

parameter names and activation functions are 

changed with each copy. The complete 

scheme is obtained by connecting the inputs, 

the outputs and all layers and is shown in Fig. 

7. 

It is important to note that the activation 

function of the final layer is different,  , so 

that the output values are equal to the class 

probabilities.  

 

Figure 6. Classic artificial neural 

network with one layer 
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Figure 7. Classic artificial neural 

network with three layers 

4.2 Symbolic analysis 

 

By clicking on the button to implement the 

schematic obtained from the image drawn 

using SchematicSolver, an implementation 

code is obtained, a small part of which is 

shown in Fig. 8.  

The symbolically derived expressions for the 

four classes use almost 316KB as it is shown 

in Fig. 9. Such a performance in the closed 

form is not possible to derive manually. In 

Fig. 10, it can be seen that the graph with all 

levels is very complex. The symbolically 

derived expressions can be used for further 

analysis, which is not possible when using a 

purely numerical approach. By changing the 

symbolic values with the numerical 

parameters from the matrix approach, the 

same probabilities are obtained, and there is a 

60.0% probability that the classification 

number is four, as with matrix computing.  

 

 
Figure 8.  A small part of the symbolic 

response of classic artificial neural network 

with 3 layers 

 

 
Figure 9. Tree graph with different levels at 

different depths 

 

 
Figure 10.  Size of the tree graph 

4.3 Symbolic computation 

 

In the same way, a neural network with four 

layers is obtained, of which three are hidden 

layers. It has the same values for the 

parameters as a network with two hidden 

layers, but with the addition of randomly 

generated values for newly added layer, a 

probability of 63.8% is obtained for class 2: 

                  |

       
        
        
        

|                             (12) 

The complexity of the closed-form final 

expressions in symbolic notation is shown in 

Fig. 11. This derivation exceeds manual 

execution. 

The symbolically obtained response of the 

neural network enables further analysis 

without the use of schematics. With 100,000 

randomly generated parameters, the 

probabilities for all outputs were determined, 

as shown in Fig. 12. 
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Figure 11. The tree graph of classic artificial 

neural network with 4 layers 
 

 
Figure 12. The tree graph of classic artificial 

neural network with 4 layers. 

 
The mean probability is determined, as shown 

in Fig. 13. 

 

 
Figure 13. Mean value of probability 

 

For the mean value, we derive an expression 

in the closed form as follows: 

 
                                

                                                   (13) 

The most likely probability was calculated 

when the maximum number of classes was 

detected, which was a probability of 43.3% 

when 800 cases were detected. For a value of 

0.7071 in relation to the maximum range in 

which the largest number of certain classes 

was calculated, the range of probability was 

between 34.7% to 54.4%. Half of all the 

classes were detected within this range. It is 

important to note that there cannot be a 

probability of less than 25% when a class is 

detected because at least one other class 

would have a probability of more than 25%. 

Each class was detected approximately 

25,000 times, and no case was detected where 

all classes were equally likely. In all cases, the 

same input signal values were used       , 

      ,           .  

For all classes and all probabilities, all 

parameter values are equally likely, that is, 

there is no parameter value where the 

probability of detecting one of the four classes 

is more pronounced. 

 

5. Application 

 
The symbolic representation of a neural 

network can be used for further analysis. 

5.1 The influence of any parameter 

 
We assume all parameters are frozen except 

for the last layer. We can then set all 

parameters to have the same values when 

calculating the matrix. In that case, the 

probability of the four outcomes is already 

given by equation (11).  

Suppose we would like to find how much the 

outputs would change for different sets of 

parameters that are in line with the neurons, 

for example, the parameters      and      . 

The class probabilities of all outputs as 

functions of these parameters are shown in 

Fig. 14 and Fig. 15. 

The probability of the output class    as a 

function of the parameters      and       is 

always higher than any other probability. This 

means that with small changes in these 
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parameter values, the expected output is 

always   , assuming all other parameters are 

frozen.  

 

 
Figure 14. Hyperbolic tangent activation 

function: probabilities of all outputs as a 

function of      

 

This property gives us the idea that the 

parameters can be changed in larger steps. 

The most expected value of a parameter can 

be implemented with a small number of shifts 

and add operations, and thus, we can replace 

all multipliers with a few shifts and adders. 

This is important for fast algorithms since the 

inherent delay of a multiplier is reduced to 

that of an adder element. 

 

 
Figure 15. Hyperbolic tangent activation 

function: probabilities of all outputs as a 

function of      . 

 

The adaptation of the parameters as 

multiplication constants during the training 

phase can be replaced by shifts and two-input 

sums during hardware implementations of 

ANN (artificial neural network). 

 

5.2 The role of the activation function 

 

Again, we assume all parameters are frozen 

except for the last layer. We can set all 

parameters to have the same values when 

calculating the matrix. The probability matrix 

for the four outputs is different with the 

logistic sigmoid σ(k) as the activation 

function:  

            |

  

  

  
  

| = |

     

     

     
     

|   |

     

     

     
     

|           (14) 

Suppose we would like to find how much the 

outputs change for different sets of 

parameters that are in line with the neurons. 

The class probabilities of all outputs as 

functions of some parameters are shown in 

Fig. 16 and Fig. 17. 

 

 
Figure 16. Logistic sigmoid activation 

function: probabilities of all outputs as a 

function of      

 

The probability of the output class   , as a 

function of the parameters      and       is 

always less than any other probability. This 

means that with small changes in these 

parameter values, the expected output is not 

  , assuming all other parameters are frozen.  

It follows that the parameter       can be 

used to make    the most expected class. 

Otherwise, the output    is the most 

expected class. 

 
Figure 17. Logistic sigmoid activation 

function: probabilities of all outputs as a 

function of       
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The only modification in the program is the 

change in the activation function, and 

everything else is the result of evaluating the 

same matrix using the logistic sigmoid 

activation function. 

5.3 Training properties 

 
Fig. 18 illustrates the class probabilities of all 

outputs as functions of the input value    

when using the hyperbolic tangent activation 

function. For positive input values   , the 

probabilities are approximately constant and 

the expected output of the class is   , 

assuming all other parameters are frozen. In 

this case, there is no need to change the 

parameters.   

 
Figure 18. Hyperbolic tangent activation 

function: class probabilities of all outputs as 

a function of    

 

Fig. 19 shows the class probabilities of all 

outputs as a function of the input value    

when using the hyperbolic tangent activation 

function. For positive input values   , the 

probabilities are approximately constant and 

the expected class output is again   , 

assuming all other parameters are frozen. In 

this case, there is no need to change the 

parameters. 

Fig. 20 shows the class probabilities of all 

outputs as a function of the input value    

when using the logistic sigmoid activation 

function. For this activation function, the 

expected output of the class is no longer   , 

assuming all other parameters are frozen. In 

this case, there is no need to change the 

parameters except to increase the probabilities 

of other outputs.   

 
Figure 19. Hyperbolic tangent activation 

function: class probabilities of all outputs as 

a function of    

 

 
Figure 20. Logistic sigmoid activation 

function: class probabilities of all outputs as 

a function of    
 

Fig. 21 illustrates the class probabilities as 

functions of the input value    when using 

the logistic sigmoid activation function. In 

this case, the probabilities of other outputs 

can be increased by changing the parameters. 
 

 
 

Figure 21. Logistic sigmoid activation 

function: class probabilities of all outputs as 

a function of    

 

For positive and negative input values    and 

  , the probabilities are approximately 

constant. Of course, the tree class 

probabilities are in the 25% to 35% range. 
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It is important to note that the input values 

can be in the value range of -5 to 5. In other 

cases, the output value of each neuron, that is, 

the input of any neuron in the hidden layers, 

can be in the range of -1 to 1.  

 

6. Discussion 

 
The most popular approach to using artificial 

neural networks (ANNs) and machine 

learning (ML) is to use mathematical matrix 

knowledge and black-box models. 

Researchers with extensive mathematical 

knowledge are familiar with such an approach 

and do not need to use different methods. 

However, researchers without extensive 

mathematical knowledge and knowledge of 

the matrix representation of black-box models 

usually do not have the technical skills to 

apply deep learning (DL) ANNs to solve 

practical problems. Therefore, they need a 

different approach. One such approach is 

presented in this paper 

Graphical programming is useful for non-

technical users as they can see the ANN 

architecture’s component parts. Instead of 

using a black-box model, a researcher can 

visually identify the architecture of an ANN 

and perform analysis to investigate the impact 

of each constituent part of the ANN.  

The proposed solution is based on symbolic 

manipulations with symbolically defined 

parameters of the system schema. The system 

schema contains everything needed for a 

different ANN presentation (graphical for 

drawing scheme, mathematical for the closed-

form response of the system, programing for 

setting programing code for software 

implementation, embedded code for hardware 

implementation, visualization of the plotting 

the system response for numeric values). A 

schematic view is not just a pictorial 

representation of a system. By means of a 

simple transformation, the system's response to 

symbolic input values generates an output. 

Another advantage is that this original method 

generates a software or hardware 

implementation. Since all system parameters 

are defined as symbols, they can be 

symbolically replaced by numbers at any time. 

For example, to plot the response, we need 

numerical values. 

An ANN response may be too complex for 

human derivation. It will be difficult to rewrite 

such a response. Therefore, this original 

method is a kind of knowledge-based system. 

The complexity of the system can be increased 

or simplified to better understand the properties 

of the ANN. For example, in a tree-layered 

ANN with four neurons in each layer, we can 

freeze most of the 48 parameters and plot the 

response as a function of a single parameter. If 

the result is not satisfactory, we can choose 

another activation function. As expected by 

experts, the appropriate parameters and 

activation function are used to obtain the 

expected response of the ANN. 

Although the higher programing language is 

used, the same approach can be developed 

using a more user-friendly programming 

language.  

The disadvantage of using ML as a black box 

is overcome by designing a non-linear system 

using visual programming. During the testing 

or validation process, system parameters can be 

viewed for verification purposes. The final 

results, presented as closed-form expressions, 

can be derived and optimized according to the 

required task. Future development includes 

developing a fully automated design based on 

the required number of neurons per layer as 

well as the number of layers. To the best of the 

authors’ knowledge, there is no similar 

approach in the literature. 
 

7. Conclusion 
 

An original algorithm for implementing 

classical neural networks, as a concept of 

proofs, is presented. This original method 

provides a symbolic response that can be 

easily transformed, for example, into a 

numerical response for plotting. The 

algorithm is developed using one of the best 

software for symbolic computing and a 

graphical user interface for drawing simple 
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constituent parts of systems. A more 

complex system can be generated via visual 

programming using the copy-move-paste 

method. Future work is planned for a 

different neural network structure and more 

activation functions. 

 

7.1 Supplementary Materials 

 

Programs are available from  

the corresponding author or  

https://www.preprints.org/manuscript/20231

1.0446/v1.  

The code is in the form of readable text with 

the extension. nb. The first step is to set up a 

working directory and import the knowledge 

as a package or text file with .m extension. 

The next few lines of the program tell how the 

scheme is visible in the images. The inputs, 

outputs and single-layer schemes are defined 

as separate lists. Replacement rules are used 

for drawings. The starting layer can be 

translated and copied several times using the 

Do command. Each symbol can be 

represented by different mathematical 

notations.  
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