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IDENTIFICATION OF THE MAJOR 

TRENDS IN CURRENT MAINTENANCE 

POLICIES USING LDA METHODOLOGY 

FOR SEMANTIC ANALYSIS OF THE 

PUBLISHED RESEARCH RESULTS 

 
Abstract: This paper presents a semantic analysis of a 

collection of articles on maintenance policies through the 

Latent Dirichlet Allocation (LDA) methodology. The research 

comprises two periods. The first, from 2000 and 2018, aims 

to reveal the habits of organizational maintenance policies 

before the second period, from 2019 to 2023, and verify the 

differences in current trends in maintenance policies 

compared to the past. 

With technologies associated with cyber-physical systems and 

Industry 4.0, a change in organizational models and 

maintenance policies is expected. The results obtained 

through the LDA methodology show changes in the 

maintenance design, namely the intensification of the 

maintainability concept, schedule optimization, and the 

integration of technologies enablers of smart production.  

Keywords: Maintenance Policies, Semantic analysis, Latent 

Dirichlet Allocation (LDA) 

 

 

1. Introduction  
 

Maintenance activities are essential for 

ensuring systems' reliability and smooth 

operation (Kamalraj, Verma, & Joshi, 2023) 

in industrial context, where numerous 

sources of uncertainty exist and is critically 

important to treat these sources of 

uncertainty properly (Kim, An, & Choi, 

2017). 

This article, aims to apply a Machine 

Learning (ML) technique the Latent 

Dirichlet Allocation (LDA) methodology, 

for extraction of “hidden” information from 

scientific publications addressing 

maintenance policies. The hypothesis of the 

article is that there are differences of the 

research topics regarding maintenance 

policies in last years in comparison with the 

earlier period. 

The collection of articles for analyses by the 

LDA methodology is extracted from Scopus 

data base (scopus.com), by the keywords 

"maintenance policies" AND (manufacturing 

OR industry). The collection extracted is 

divided in 2 collections of articles for 2 

periods, from year 2000 to 2018 and from 

2019 to 2023. The analyses of 2 different 

periods allows to observe whether current 

trends in maintenance policies diverges from 

previous ones and whether new concepts 

emerge in maintenance policies scientific 

field. 

The LDA methodology is applied for a 

semantic analysis for identification of 

relevant topics associated to the maintenance 

policies. The model considers the words in 

the text that are most plausible for a topic. 
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The words considered are from the articles 

abstracts. 

Following, the article presents a traditional 

literature review related to maintenance 

policies, in chapter 2. Next, the LDA 

methodology is presented in chapter 3. After, 

the results obtained by application of LDA 

methodology are shown in chapter 4 with 

commentaries. The article finish with 

conclusions in chapter 5. 

This article, is an extended version of the 

conference paper presented to “The Quality 

Festival 2023”, which took place 24-27 May 

2023, at Faculty of Engineering, University 

of Kragujevac, Serbia.  

 

2. Literature review 
 

"Maintenance strategies" is often considered 

a synonym of "maintenance policies". In the 

literature, "maintenance strategies" and 

"maintenance policies" are used 

interchangeably (Santos, Cavalcante, & Wu, 

2022). 

Many may suspect that production and 

scheduling problems deal with systems 

remaining available forever. This fallacy is 

far from reality, as there are times when 

machines break down and/or require repair 

to be maintained (Mobley, 2002), implying 

that production planning and scheduling 

cover an infinite number of models. 

In general, the production process 

planning/scheduling focuses on a single 

machine, modelling its deterioration and, 

simultaneously, allowing the analysis and 

configuration of more complex group 

technology (Wang, 2002), such as achieving 

integrated production and maintenance 

scheduling, optimizing maintenance time 

and avoiding costs associated with machine 

failures (Ladj, Varnier, & Tayeb, 2016). 

However, the joint optimization of 

maintenance and production plans deserves 

greater attention and more in-depth studies 

(Bajestani, Banjevic, & Beck, 2014; Liao, 

Pan, & Xi, 2010; Pan, Liao, & Xi, 2010), in 

addition to taking on integrated maintenance 

scheduling and machine degradation 

modelling, where they are taken into 

consideration separately (Mourtzis & 

Vlachou, 2018; Zhai, Riess, & Reinhart, 

2019), aiming for perfect reliability, and 

availability for complex systems can be 

simplified by scheduling the maintenance 

staff schedules. 

During the last decades, maintenance has 

changed significantly taking into account the 

new manufacturing paradigms (Vrignat, 

Kratz, & Avila, 2022). Nowadays 

organizations try to implement smart and 

efficient maintenance processes to raise 

productivity, increase customer satisfaction, 

reduce machine downtime, and decrease 

delays (Dakkak, Irhirane, & Bounit, 2019; 

Hajej, Nidhal, Anis, & Bouzoubaa, 2020). 

Maintenance policies aim, for example, to 

reduce costs, increase reliability or improve 

the quality of services and products. 

Increasingly complex manufacturing systems 

have made maintenance more relevant to the 

industry with the increase in dynamics of 

production activities (Sezer, Romero, 

Guedea, Macchi, & Emmanouilidis, 2018). 

With the challenges that occur due to 

stochastic failures and multistate 

deterioration in production systems, and with 

the prospect of increased flexibility in 

production scheduling management (Sun & 

Geng, 2019), corrective maintenance (CM) 

and preventive maintenance (PM) policies 

attempt to keep different production systems 

functional (Cui, Lu, Li, & Han, 2018). CM 

was the first to be applied. CM is done only 

after the failure occurs and is detected. Over 

time, PM began to be implemented. PM has 

specific schedules for performing 

maintenance (Matyas, Nemeth, Kovacs, & 

Glawar, 2017; Nemeth, Ansari, Sihn, 

Haslhofer, & Schindler, 2018). 

Although several researches have focused on 

flexible workshop scheduling and often 

assume a static environment in production, 

with machines unoccupied and available for 

production, it does not reflect realistic 

production environments, with dynamic 
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environments, with constant changes in the 

entry of new orders (Gao et al., 2015), 

variations in processing times and changes in 

expiration dates (Baykasoğlu, Madenoğlu, & 

Hamzadayı, 2020). As machines age, the 

likelihood of the need for downtime caused 

by scheduled PM tasks increases (Zandieh, 

Khatami, & Rahmati, 2017; Zhang, Liao, 

Zeng, Shi, & Zhao, 2021), as well as 

occasional machine failures, which trigger 

CM. 

In 1970, a Japanese concept of Total 

Productive Maintance (TPM) emerged, with 

the main objective of increasing the 

productivity of existing equipment, 

expanding PM to become more productive 

maintenance and complementary to other 

global strategies (Zlatić, 2019). The 

implementation of TPM allows you to 

maximize the use of all equipment, 

eliminating losses resulting from failures, 

maximizing the efficiency of equipment 

operation and building a comprehensive PM 

system (Rasztorf, Urbaniak, & Zimon, 

2023). 

PM encompasses time-based preventive 

maintenance (TBPM) and condition-based 

maintenance (CBM) (Ben-Daya & Rahim, 

2000).  TBPM is a traditional version of PM 

as maintenance is also predetermined for 

specific schedules, CBM, on the other hand, 

selects maintenance activities considering 

the true conditions of the system, i.e., it 

monitors degradation and predicts failures. 

However, this subcategory encompasses 

predictive maintenance (PdM), which uses 

data and time understanding to signal the 

possibility of a failure and to prevent 

downtime as well. Predictive maintenance 

(PdM) and predictive analytics represent one 

of the recent innovations that provokes 

curiosity in researchers and industry. PdM 

skills are essential with the rise of complex 

industrial processes (Shrivastava, Singhal, & 

Bhuvana, 2023). There are relevant 

developments concerning complex ML 

models (Putnik, Manupati, Pabba, Varela, & 

Ferreira, 2021), and considering Remaining 

Useful Lifetime (RUL) (Manupati et al., 

2019). 

Real-time optimization models are the most 

required to be applied in practice, the 

expression "real time" is related to the 

system response to stops and unforeseen 

events that do not interrupt the production 

process (Harmonosky & Robohn, 1991). 

Manufacturing systems are exceedingly 

dynamic and prone to interruptions and 

unforeseen events. Optimization models 

allow to assist the manufacturing system to 

withstand and adjust to these unforeseen 

events in real time (Cheng et al., 2018; 

Zheng et al., 2018). These systems include 

smart objects that represent a sub-system of 

broader concepts of advanced manufacturing 

systems, such as Industrial Internet of Things 

(IIoT), ubiquitous and cloud manufacturing 

systems, cyber-physical systems, digital 

factories, factories of the future, and Industry 

4.0, which is related to the phenomena of 

Big Data and associated technologies and 

techniques (Putnik et al., 2015). It 

emphasizes that without an information 

system based on the application of modern 

information technology, it cannot achieve an 

efficient and effective management of 

maintenance, which must be open and 

adaptable to grow with the information 

system and included processes, facilitating 

completion of this information system after a 

few years (Arsovski, Pavlovic, & Arsovski, 

2008). The data produced by machines can 

improve maintenance in different areas (Kim 

et al., 2017) based on the IIoT and Artificial 

Intelligence (AI) (Zonta et al., 2020), 

allowing to improve fault detection, quality 

control and decision support (Shivajee, 

Singh, & Rastogi, 2019). With the 

accelerated development of the IIoT, 

Industry 4.0, Big Data and Cloud Computing 

(Chen, Mao, & Liu, 2014; Xu, He, & Li, 

2014), companies are looking for strategies 

to differentiate themselves from competitors 

and improve quality of its processes, 

products and services, which requires the 

collection of data on machines, and through 

its analysis, quality flaws can be corrected 

(Köksal, Batmaz, & Testik, 2011). Some 
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studies (Vaidya et al., 2018; Pierdicca et al., 

2017; Jones et al., 2019) agree on the 

evolution of technology in 9 pillars, and 

these pillars are necessary to provide the 

improvement in the areas pointed out. The 

nine pillars encompass the creation of 

information from horizontal and vertical 

systems, big data and analytics, cloud 

computing, the IIoT, simulation, 

Autonomous Robots, Cyber Security, 

Augmented Reality, and Additive 

Manufacturing. These pillars transform the 

factory, meaning that it becomes fully 

autonomous, integrated and optimizes the 

production process. 

Using previous technologies, Prognosis and 

Health Management (PHM) has emerged as 

a higher-level adaptation of CBM, intending 

to achieve more efficient maintenance that 

applies RUL for decision support (Vrignat et 

al., 2022). However, the PHM does not end 

with the RUL forecast. System health 

management goes beyond failure time 

predictions and supports optimal 

maintenance and logistics decisions, 

considering available resources, the 

operational context and the economic 

consequences of different failures. Health 

management is the process that enables 

timely and optimal maintenance actions to 

be taken based on diagnostic and prognostic 

results, available resources and operational 

demand (Fink et al., 2020). 

Uncertainty in forecasts is an inevitable part 

(Kim et al., 2017), requiring the use of 

advanced predictive tools that reduce the 

impacts of these uncertainties (Lee, Lapira, 

Bagheri, & Kao, 2013). PHM systems 

occupy a central place in the opportunities 

created by cyber-physical systems and 

Industry 4.0, aiming to reduce the 

probability of extreme failure events (Biggio 

& Kastanis, 2020). 

However, most maintenance optimization 

works do not consider PHM. Eventually, this 

gap arises because most studies apply 

detection, diagnostic and prognostic models 

to individual components of different types, 

while optimization systems require the 

analysis of integrated systems (Pinciroli, 

Baraldi, & Zio, 2023). PHM can be 

considered a holistic approach to a 

management system (Fink et al., 2020), with 

integration into complex industrial 

manufacturing systems being a 

differentiating element of the algorithms 

applied in PHM compared to other 

methodologies (Lee, Bagheri, & Kao, 2014). 

With Industry 4.0, production planning is a 

priority, as achieving efficiency and speed in 

maintenance requires organizations to have a 

profitable production system (Rødseth, 

Schjølberg, & Marhaug, 2017). Therefore, 

the maintenance activities should be oriented 

and adapted to maximize the availability of 

installed systems and equipment in line with 

customer needs, with efficiency, 

effectiveness and sustainability, considering 

costs, production quality, environmental 

protection, safety and legality (Moutinho & 

Oliveira, 2015). 

 

3. Methodology 
 

In this semantic analysis, two sets of article 

abstracts extracted from Scopus 

(scopus.com) were used. The first collection 

contains 335 articles, published from 2000 to 

2018 and the second one contains 214 

articles, published from 2019 to 2023. The 

keywords used in the search were: 

“maintenance policies” AND (manufacturing 

OR industry). 

In this article, the data analysis method 

chosen was topic modelling. Topic 

modelling automatically maps hidden topics 

in a set of text through ML algorithms. 

Among the different ML techniques, LDA 

methodology is chosen. LDA is a set of topic 

modelling techniques that automatically 

finds latent structures in a corpus of 

unstructured documents using word 

frequency statistics (Jelodar et al., 2019). A 

word is seen as a basic unit of data 

measurement, the corpus as a set of 

documents that encompass the data set, and 

each document as a sequence of words. The 
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different words in a corpus represent the 

vocabulary and the topics represent the 

probability distributions of the vocabulary 

words (Vayansky & Kumar, 2020). 

Therefore, it is expected that certain words 

stand out more frequently in documents, as 

each document is reflexively related to a 

certain topic. Topics are semantic sets 

formulated by words that stand out in 

documents and in the corpus (Blei, 2012). 

Fitting the LDA model requires an 

assessment of the results. Among the best-

known measures are relevance (Sievert & 

Shirley, 2014) and coherence (Stevens, 

Kegelmeyer, Andrzejewski, & Buttler, 

2012). Given the reasons presented by 

Sievert and Shirley (2014), we adopted the 

value of λ=0,6 for the measure of relevance 

for defining the topics. 

Considering the size of the corpus, and 

because it is a coherence measure that 

considers the total size of the samples, the 

choice of the coherence CUmass measure 

seems to be the most appropriate (Stevens et 

al., 2012). The CUmass coherence metric 

(Mimno, Wallach, Talley, Leenders, & 

McCallum, 2011) is given by Equation 1: 

 

𝐶𝑈𝑚𝑎𝑠𝑠 = ∑ ∑ log
𝐷(𝑤𝑖,𝑤𝑗)+1

𝐷(𝑤𝑗)
𝑖−1
𝑗=1

𝑁
𝑖=2       (1) 

 

Where, in a document D, D(wi, wj) is the 

document frequency of the set of words wi 

and wj and D(wj) is the document frequency 

of only wj. When fitting LDA models, a 

CUmass value close to zero is desirable. 

Considering the constitution and size of the 

corpus of the two periods analyzed, the 

following criteria were established in the 

LDA algorithm: 

- Reduce the search to 4 topics due to the 

small size of the corpus and guarantee an 

intertopic distance that avoids the creation of 

topic clusters. 

- Use 30 relevant terms per topic. Although 

there is the possibility of increasing 

redundancy in the terms that define the 

topics, this redundancy makes it possible to 

accentuate the validity of the name attributed 

to the topic. 

- Prepare the documents belonging to the 

corpus. Considering that LDA is an ML 

technique, the algorithm must include 

specific routines to eliminate inaccuracies, 

duplications, redundancies and 

inconsistencies during data processing 

(Sharma, 2023).  In this process, the use of 

stopwords is restricted. All these steps were 

supported by the NLTK library (Phand & 

Chakkarwar, 2018), with the most common 

words, such as prepositions and numbers, 

being eliminated. In order not to lose the 

expression “4.0”, “4.0” was replaced by 

"fourdotzero" in the texts. There is a routine 

that textualizes the acronyms with the 

information present in the articles and 

eliminates any text that is in parentheses. 

The final parts with additional information 

from the editors of the articles is removed. 

All words became singular. Only nouns were 

considered. 

- Run a routine with 1000 simulations to 

create n-grams for the LDA model. The 

selection criterion for the most favorable 

simulation is the CUmass measure. 

The methodology is summarized in figure 1. 

 

 

Figure 1. Proposed methodology for the automatic identification of the major trends in current 



Putnik et al., Identification of the major trends in current maintenance policies using IDA methodology for semantic 
analysis of the published research results 

592                                     

maintenance policies. 

4. Results  
 

Figure 2 shows the plot of the CUmass 

coherence scores. The best results of 1000 

simulations confirms that the selection of the 

number of 4 topics gives the value of 

coherence CUmass closest to zero as 

required, for each collection. 

 
 

a) b) 

Figure 2. Topic coherence index plot for data between a) 2000 and 2018 and b) 2019 and 

2023. 

The results, in Figure 3 to 10, present 

intertopic distance maps that show the 4 

topics and the most relevant terms, 

considering λ=0.6. The Principal Component 

(PC) analysis projection compiles the 

similarity, allowing to obtain the intertopic 

distance (Chuang, Ramage, Manning, & 

Heer, 2012). PC1 embodies the most 

relevant variation in the data, while PC2 

represents the second most relevant variation 

in the data. Although they represent the same 

data set, PC2 is independent of PC1. PC 

analysis allows the visualization of topics in 

a two-dimensional orthogonal graph, 

simplifying subsequent interpretation. 
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Figure 3. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 1 (2000-2018). 

 
Figure 4. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 2 (2000-2018). 

 

 
Figure 5. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 3 (2000-2018). 
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Figure 6. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 4 (2000-2018). 

 

 
Figure 7. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 1 (2019-2023). 
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Figure 8. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 2 (2019-2023). 

 

 
Figure 9. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 3 (2019-2023). 
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Figure 10. Intertopic Distance Map and the list of the Top-30 most relevant terms in topic 4 (2019-2023). 

 

Starting with the collection of articles 

between 2000 and 2018, table 1 shows the 4 

topics, and the 30 most relevant terms for 

each topic. The topic definition is 

constructed by the experts taking in the 

account corresponded relevant terms and 

their influences.  

The table 2 shows the 4 topics, and the 30 

most relevant terms for each topic, for the 

collection of articles between 2019 and 

2023.  

Table 3 shows the topics defined for the 2 

period analysed. 

 

Table 1. Topics and 30 most relevant terms from 2000 to 2018. 

Topics (2000-2018) 30 most relevant terms 

T1 – Production 

system, reliability, 

and conditional 

maintenance 

[“maintenance”, “policy”, “performance”, “equipment”, “manufacture”, “time”, 

“failure”, “cost”, “model”, “process”, “industry”, “item”, “improvement”, 

“product”, “production”, “measure”, “area”, “condition”, “reliability”, “tool”, 

“line”, “quality”, “system”, “method”, “effect”, “machine”, “resource”, 

“simulation”, “case”, “utilization”] 

T2 - Predictive 

maintenance, 

engineering and 

operations 

management  

[“maintenance”, “system”, “model”, “component”, “process”, “policy”, “base”, 

“industry”, “framework”, “management”, “datum”, “program”, “operation”, 

“business”, “module”, “information”, “engineer”, “development”, “application”, 

“decision”, “design”, “function”, “state”, “degradation”, “requirement”, 

“approach”, “prediction”, “reliability”, “complexity”, “aicraft”] 

T3 – Planning, 

inventory control and 

preventive 

maintenance 

[“production”, “machine”, “rate”, “control”, “cost”, “plan”, “failure”, 

“problem”, “inventory”, “level”, “repair”, “order”, “capacity”, “model”, 

“policy”, “strategy”, “time”, “demand”, “product”, “mine”, “simulation”, 

“preventive_maintenance”, “experiment”, “hedge_point”, “consist”, “schedule”, 

“influence”, “objective”, “buffer”] 

T4 – Risk assessment 

and integration of 

maintenance 

strategies 

[“risk”, “analysis”, “method”, “rimap”*, “base”, “power”, “dimension”, 

“project”, “cable”, “identification”, “inspection”, “risk_inform”, “assessment”, 

“reliability”, “similarity”, “safety”, “water”, “integration”, “approach”, 

“preference_order”, “prevention”, “subsystem”, “group”, “application”, 

“cluster”, “maintainer”, “guideline”, “strategy”, “weight”, “vehicle”] 
* “EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European 

Guideline for optimized risk based maintenance and inspection planning of industrial plants” (Bareiß et al., 2004). 
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Table 2. Topics and 30 most relevant terms from 2019 to 2023. 

Topics (2019-2023) 30 most relevant terms 

T1 – Condition-based 

maintenance, inspection 

planning and schedule 

optimization.  

[“maintenance”, “system”, “policy”, “production”, “cost”, “model”, 

“optimization”, “inspection”, “machine”, “plan”, “failure”, “manufacture”, 

“rate”, “degradation”, “function”, “problem”, “state”, “time”, “action”, 

“method”, “unit”, “level”, “condition_base”, “novel”, “parameter”, 

“industry”, “relate”, “base”, “schedule”, “multi”] 

T2 – Total productive 

maintenance, Industry 

4.0 and reliability 

[“maintenance”, “strategy”, “asset”, “factor”, “railway”, “management”, 

“organization”, “supply”, “framework”, “risk”, “implementation”, “insight”, 

“chain”, “deficiency”, “total_productive”, “practice”, “infrastructure”, 

“technology”, “analysis”, “highlight”, “policy”, “industry_fourdotzero”, 

“benefit”, “element”, “researcher”, “approach”, “methodology”, “tool”, 

“track”, “reliability”] 

T3 – Cyber-physical 

systems, health 

management and 

information 

technologies 

[“reliability”, “product”, “model”, “datum”, “component”, “process”, 

“manufacture”, “maintenance”, “machine”, “quality”, “health_management”, 

“system”, “information_technology”, “policy”, “feature”, 

“cyber_physical_system”, “base”, “monitor”, “degradation”, “analyze”, 

“delivery”, “knowledge”, “condition”, “occurrence”, “term”, “guide”, 

“defect”, “supervise”, “support”, “real_time”] 

T4 – Systems reliability 

and maintainability 

performance 

[“system”, “analysis”, “plant”, “computer”, “variability”, “signal”, 

“maintainability”, “diagram”, “block”, “emission”, “source”, “performance”, 

“reliability”, “measure”, “model”, “framework”, “chemical”, “mineral”, 

“indicator”, “assign”, “chlorine”, “accord”, “dependability”, “trend”, 

“quantity”, “approach”, “corrosion”, “voltage”, “tool”, “similarity”] 

 

Table 3. Topics defined for the period from 2000 to 2018 and for the period from 2019 to 

2023.  
Topic Topic definition for the period from 

2000 to 2018 

Topic definition for the period from 2019 to 

2023 

T1 Production system, reliability, and 

conditional maintenance 

Condition-based maintenance, inspection planning 

and schedule optimization. 

T2 Predictive maintenance, engineering and 

operations management 

Total productive maintenance, Industry 4.0 and 

reliability 

T3 Planning, inventory control and preventive 

maintenance 

Cyber-physical systems, health management and 

information technologies 

T4 Risk assessment and integration of 

maintenance strategies 

Systems reliability and maintainability 

performance 

 

Given the topics that define trends in 

maintenance policies in the period from 

2019 to 2023, comparing with the period 

from 2000 to 2018, we observe that: 

 1) Maintainability implies design for 

maintenance; 

 2)  Industry 4.0, cyber-physical systems 

and information technologies imply 

the use of IIoT, distributed 

computing, cloud, edge and fog 

architectures, i.e., smart production;  

3)  Integration of inspection planning, in 

addition to the “classic” integration 

of programming/ operation 

management with maintenance. 

This development is a step towards 

a kind of “holistic” maintenance. 

 

5. Conclusion 
 

The terms generated by the LDA analyses 

show that cost, reliability, risk, failure and 

performance, among others, are present in 

the both periods studied, remaining relevant 

issues in current maintenance policies. The 

word optimization only became relevant in 

the most recent period of 2019-2023, 

resulting from the opportunities that emerged 
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through the adoption of cyber-physical 

systems and industry 4.0 technologies that 

improve PHM performance, increasing the 

efficiency and flexibility of organizational 

systems. 

The appearance of TPM in topic 2, referring 

to the period from 2019 to 2023, shows that 

old methodologies and technologies are re-

emerging as viable solutions to reduce the 

uncertainties surrounding production 

systems. 

The results of applying LDA are in line with 

the literature review in chapter 2. It shows 

that LDA is a valid alternative to traditional 

literature review techniques that use statistics 

and require an enormous expenditure of time 

to analyze a large amount of information. 

Furthermore, with LDA, the prejudice of 

researchers, whose biases can lead to a 

discriminatory selection of articles, is 

significantly eliminated. In the proposed 

application LDA algorithm, we seek to 

ensure that bias only appears in the synthesis 

of topic construction transparently. 

The methodology and algorithm applied 

favour data quality by removing texts' 

acronyms that could become redundant 

elements and sources of bias in the LDA 

analysis. The emergence of the RIMAP 

acronym in topic 4, referring to the period 

from 2000 to 2018, reveals that the 

algorithm doesn't automatically replace all 

acronyms due to the differences of the 

documents that are part of the corpus. 

Although it does not seem that this gap has 

significantly harmed the qualification of the 

topics, for future work, we intend to improve 

the algorithm in terms of data processing and 

the evaluation of the parameters that are 

input to LDA, considering the size and 

constitution of the corpus. 
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