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APPLICATIONS OF DEEP LEARNING TO 

IMPROVE THE QUALITY OF 

HEALTHCARE OUTCOMES 

 
Abstract: The aim of this paper is only to provide a systematic 

review of important research undertaken thus far in Deep 

Learning (DL) applications in healthcare and biomedicine. A 

total of 47 papers were shortlisted for this review. The review 

revealed that DL can be and has been applied in a number of 

healthcare contexts to improve outcomes. The two most 

important ones among them, indicated by the number of 

available papers, are cancer and medical imaging. A good 

number of papers on drugs and their development were also 

available. However, it must be highlighted that such 

categorisations may be somewhat arbitrary. It may be possible 

to categorise one paper in more than one category. The 

primary implication of this research for the academia is that 

there is a large deficit of papers on many of the chronic and 

lifestyle related illnesses such as diabetes as well as some 

diseases caused by immunodeficiency. There is also a complete 

deficit of literature on most of the acute health problems. This 

may be indicative of the need for more intensified research in 

the deficit areas. The primary implication of this research for 

health practitioners is that there is a plethora of substantial 

research that is currently available and accessible regarding 

the applications of DL to cancer and medical imaging which 

may be utilised for their practice. 

Keywords: Deep Learning; Healthcare; Biomedicine; 

Outcomes; Quality. 

1. Introduction 

  
Deep learning and its application are new 

areas of research that fall within the ambit of 

Machine Learning (ML). Deep learning or 

DL and its application has the potential to 

move ML closer to one of its original goals: 

Artificial Intelligence (Gulcehre, 2015). 

Investopedia (Hargrave, 2019) describes DL 

as a subcategory of ML in artificial 

intelligence (AI) which also has networks that 

are capable of learning unsupervised from 

data that is unstructured or unlabelled. This is 

also known as deep neural learning or a deep 

neural network. The evolution of big data 

makes it easier to have access to a range of 

details regarding any subject. However, 

extracting relevant information from such a 

voluminous data by human beings is 

practically impossible. There is great 

potential that can be realised by analysing this 

wealth of information for which AI systems 

can be adapted to provide automated support. 

The most common AI application used for big 

data analysis is ML. This algorithm improves 

itself the more it is used and the more data is 

added to it.  
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DL, which is also a subcategory of ML, 

adopts a hierarchical level of artificial neural 

networks in order to undertake the processes 

associated with ML. The artificial neural 

networks bear resemblance with the human 

brain, with neuron nodes that are connected in 

a manner that is similar to a web. Whereas 

earlier and more traditional programs develop 

their analysis by incorporating data in a linear 

way, the hierarchical function of DL systems 

allows machines to compute data by utilising 

a nonlinear approach. Deep learning mimics 

the working system of the human brain to 

process data for decision making. Deep 

learning can learn from both unstructured and 

unlabelled data.  

Deep learning has numerous applications in 

various fields as the potential indicates from 

the above descriptions. One of them is in 

biomedicine. This paper reviews the progress 

of deep learning in biomedicine.   

 

2. Methodology  

 
It should be stated at the outset that this paper 

does not aim to provide an exhaustive review 

and it is almost impossible due to the recent 

explosion of research and papers on various 

aspects of DL applications in biomedicine. 

The intention here is to provide major 

pointers to the direction towards which the 

whole concept of DL is moving in the realm 

of biomedicine. Google Scholar was searched 

to select papers of various types dealing with 

DL applications in biomedicine. By this type 

of search, 47 papers were selected. The results 

from this will be elaborated on in the sections 

below. 

 

3. Result  
 

3.1 Scope of DL in biomedical applications 

 

Volumes of data have been made available in 

biological and medical fields. These data may 

be found in a multitude of forms. Medical 

images, electroencephalography, genomic 

and protein sequences, electronic patient 

records are only a few of them. These data can 

be used for learning about human health and 

diseases. Some of these data can provide 

clues for interventions leading to cure or 

improve the management of the disease. A 

review of DL techniques and a few of its 

state-of-the-art applications in the biomedical 

field was provided by Cao et al. (2018). DL 

tries to derive generalised models from a large 

volume of data using multi-layered deep 

neural networks (DNNs), enabling it to derive 

meanings out of a variety of data forms like 

images, sounds, and texts. DL has two 

properties in general. Multiple layers of 

nonlinear processing units is one of them. The 

other is the supervised or unsupervised 

learning of feature presentations layer by 

layer. Automatic speech recognition, image 

recognition, natural language processing, 

drug discovery, and bioinformatics are only 

some areas of medical fields in which DL has 

been used. The timeline of DL’s development 

along with the most commonly used ML 

algorithms was provided by the authors 

reproduced in Fig 1. 

In Fig 1, the development of DL and neural 

networks is shown in the top panel, and 

several commonly-used ML algorithms are 

shown in the bottom panel. Abbreviations: 

NN, neural network; BP, backpropagation; 

DBN, deep belief network; SVM, support 

vector machine; AE: auto-encoder; VAE: 

variational AE; GAN: generative adversarial 

network; WGAN: Wasserstein GAN.  

Many functional logistics are possible in DL, 

which have been discussed with 

mathematical treatment. A long list of 

applications of DL in biomedical fields is 

tabulated by Cao et al. (2018). In medical 

image classification and segmentation, 

distinct features for medical image 

interpretation are manually designed for 

classification as in the case of detection of 

lesions or abnormalities and in marking 

regions of interest such as tissues or organs in 

different medical applications. This requires 

special expertise of the physician. However, 

the complexity of machine learning 

applications in this area have limited its 
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applicability as has the lack of adequate 

expertise in medical image interpretation and 

the large amounts of annotated data required 

for analysis. However, high levels of success 

has been achieved by using DL have attained 

success in several computer vision tasks like 

object recognition, localization, and 

segmentation in natural images. Thus, an 

active field of ML in medical image analysis 

has evolved. The authors discussed many 

applications in which DL has been used. 

Considering the merits of DL, its low uptake 

in biomedicine was also pointed out by 

Mamoshina et al. (2016). 

 

 

Figure 1. Timeline of deep learning development (Cao et al., 2018) 

 

3.2 Reviews 

 

In a review, Faust et al. (2018) pointed out 

that DL was suitable for large and varied 

datasets. However, its full potential has not 

yet been realised. This is because its use and 

application in healthcare has been quite 

limited. This is especially the case with the 

area of physiological signal analysis which 

leaves room for further examination. In 

another review on big data, their sources and 

methods of processing and using them for 

various purposes, including elements of DL, 

were discussed by Costa (2014). The types, 

nature and sources of big data, their various 

limitations, models and methods of using 

them for solving many biomedical problems 

were reviewed in detail by Kocheturov, 

Pardalos, and Karakitsiou (2019). Three 

broad areas of machine learning applications 

in biomedicine (clinical diagnostics, 

precision treatments, and health monitoring) 

were discussed by Goecks et al. (2020). Using 

Google Scholar search, a review of machine 

learning and DL was done by Alanazi and 

Alanazi (2020). The topics covered in this 

review were Precision Medicine, Machine 

Learning (ML) Empowered Biometric 

Methods, Visible Machine Learning for 

Biomedicine and Deep Learning and 

Biomedicine. The review highlighted that the 

healthcare sector is in the process of being 

reorganised owing to concurrent 

developments in electronics, communication 

and computers are leading biomedicine to a 

stage of data revolution. Applications of DL 

and ML in biomedicine include predictive 

and inferential analysis using medical 

records, imaging data, sequencing data, 

genotypes and sensor data.  

In a similar review of DL applications, the 

topics related to structured biomedical data, 

image processing, DL models and potential 

trends for the future were discussed by Bacciu 
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et al. (2018). Traditional mining of complex, 

high-dimensional, heterogeneous, poorly 

annotated and largely unstructured 

biomedical data and statistical learning 

approaches require feature engineering first 

to transform them into effective and robust 

data. Only then, clustering and prediction 

models can built on them. Many challenges 

exist in this respect. DL has provided answers 

to many of these problems. How DL enables 

to overcome these challenges was the subject 

of the review by (Miotto et al., 2018). 

 

3.3 Specific applications 

 

More specifically, the ability of DL to predict 

more or less successfully about the cellular 

processes involved in pathogenesis due to 

genetic variations, modulation of activities of 

therapeutically relevant proteins and small 

molecules, radiographic images indicative of 

disease were highlighted by Wainberg et al. 

(2018). On the other hand, some challenges 

also exist due to the very flexibility of DL. 

There is no guarantee about the performance 

of deployed systems. There are problems of 

trust with stakeholders, clinicians and 

regulators, as they will need a rationale for the 

use of DL for these purposes of decision 

making. This problem can be overcome by 

using the same flexibility itself for training 

the models to provide rationale for their 

predictions also.  

The main goal of using AI in biomedicine is 

to translate the patient data into successful 

therapies. However, problems of handling the 

extreme heterogeneity of data and paucity of 

mechanistic insight into predictions exist. 

Michael et al. (2018) proposed “visible” 

approaches to guide the model structure using 

experimental biology. In this model, ML will 

not act as a substitute for experimental cell 

and tissue biology, but will be highly enabled 

by such knowledge if the precise visible 

intelligence infrastructure is provided. The 

visible model proposed by the authors was 

claimed to resemble the Visible V8 engines in 

terms of similarities of hierarchical nature of 

components as given in Fig 2. Visible 

learning has close relationship with model 

interpretation paradigm itself in the form of 

model internal logic after it has been trained. 

Models for various biomedical purposes have 

been researched.  

 

 

Figure 2. Visible healthcare model resembles Visible V8 engine model (Michael et al., 2018) 

 

In the ML part of DL, relevant data like DNA 

or RNA sequences, gene sets or pathways, 

gene interaction or co-expression networks, 

ontologies, and phylogenetic trees have a rich 

structure not easily encodable as predictors of 

real value. Some recent machine learning 
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models used data structure to constrain model 

architecture or to combine structured data into 

model training. In biomedicine, while the 

availability of data is low due to small sample 

size, model interpretability is highly critical. 

This means that prior understanding and 

experience with structured data has the 

potential to be incorporated as a solution to 

this type of problem (Crawford & Greene, 

2020).  

According to Bzdok and Ioannidis (2019) 

when research data are used as prior available 

data to enhance the sample size in DL, it 

should be remembered that null hypothesis 

testing for significance should be useful for 

modelling goals. The progressive use of 

methods is: exploration for a first cursory 

glance to indicate potentially interesting data 

available now; inference aiming at isolating 

variables which may be individually 

important beyond the level of mere chance 

indicated by P values and prediction to 

identify sets of variable which may help to 

guess outcomes precisely based on other or 

future data. It may be also noteworthy that P 

values are not meant to measure the predictive 

accuracy of a model. Variables found 

significantly important by null hypothesis 

may be dissimilar from variables which may 

maximize predictive performance in new 

individuals or settings. 

 

 

3.4 Biochemical processes 

 

Alternative splicing (AS) is a genetically and 

epigenetically regulated pre-mRNA 

processing method to create greater 

diversities of transcriptome and proteome. It 

is possible to obtain deeper insights into many 

biological contexts involving AS, for 

example, development and diseases. For this 

purpose, comprehensive decoding of these 

regulatory mechanisms is done. Xu et al. 

(2017) assembled splicing (epi)genetic code, 

called DeepCode (a DL method) for 

differentiation of human embryonic stem cell 

(hESC) by meshing together the 

heterogeneous features of genomic sequences 

along with a multi-label deep neural network. 

The epigenetic features enabled Deepcode to 

predict the splicing patterns and their changes 

during hESC differentiation. Thus the 

importance of incorporating the epigenetic 

properties while assembling a comprehensive 

splicing code was demonstrated. Deepcode 

also exhibited robust prediction qualities for 

cell lineages and datasets. A novel candidate 

mechanism linking histone modifications to 

hESC fate decision was, thus, demonstrated. 

When applied and adapted to varied contexts, 

DeepCode could be expanded to many other 

biological and biomedical fields. A schematic 

view of DeepCode and its applications given 

in the paper is reproduced in Fig 3. 

 

 
Figure 3. A schematic view of DeepCode and its applications  

(Xu et al., 2017) 
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A platform, Galaxy-ML was developed by 

Gu, et al. (2020) to increase the accessibility 

of supervised machine earning to biomedical 

researchers. The platform allows using web 

browser and can be used to perform end-to-

end reproducible machine learning analyses 

at large scale. The architectural structure, 

features and various applications of Galaxy-

ML with detailed methodology have been 

described in the paper. 

 

3.5 Cancer 

 

A specific case of cancer prediction using DL 

was reported by Xiao et al. (2018). Gene 

expression can be the basis of efficient cancer 

prediction leading to precise and effective 

treatment decisions. It is now possible to 

differentiate between cancer patients from 

healthy persons using machine learning 

methods. In this DL-based multi-model 

ensemble, informative gene data were 

selected by differential gene expression 

analysis leading to five different 

classification models. DL is used over the 

output of the selected five classifications. The 

model was tested on three types of cancer 

affecting lungs, stomach and breast to find 

increased accuracy of predictions of the three 

cancers. Another DL-based cancer prediction 

model, a stacked sparse auto-encoder (SSAE) 

based model, was proposed by Xiao et al. 

(2018). The model consisted of sparsity and 

training. The model used the three public 

RNA-seq datasets for prediction of lung, 

stomach and breast cancer.  

The model predicted the three cancers better 

than other methods. An attempt was made for 

building a DL-based model that could predict 

the disease’s progression in head and neck 

squamous cell carcinoma (HNSCC) patients 

by Zhao et al. (2020). The method used was 

integration of multi-omics data. RNA 

sequencing, miRNA sequencing and 

methylation data from The Cancer Genome 

Atlas (TCGA) were used as the input for the 

autoencoder which is a DL approach. An 

autoencoder-based prognosis model was built 

by SVM algorithm, using which three 

confirmation tests with three data sets were 

done. The model was then contrasted against 

two other approaches in order to test its 

predictive performance. The differential 

expression analysis for mRNAs, microRNAs 

(miRNA) and methylation was also done. 

Functional annotation of differentially 

expressed genes (DEGs) was obtained using 

function enrichment analysis. The results 

showed good fitness index for identified 

prognosis models for two subgroups of 

patients with highly differing progress free 

survival (PFS). The two subgroups were 

validated in the three confirmation tests. 

Compared to principal component analysis 

(PCA) or individual Cox-PH-based models, 

DL-based model was more accurate and 

efficient. A number of pathways and gene 

targets were uncovered, which had possible 

implications in cancer progression. The 

model has the potential to allow for and 

enable the development of individualized 

therapy for HNSCC patients with improved 

prognosis.  

There are differences between the 5-years 

disease-free survival (DFS) rates of non-

invasive adenocarcinoma (non-IA) and 

invasive adenocarcinoma (IA) stage-I lung 

adenocarcinoma. The aim of the study by Xia 

et al. (2020) was to utilise AI schemes for the 

development of CT images in order to 

facilitate categorisation between non-IA and 

IA nodules and incorporate deep learning 

(DL) and radiomics features to enhance the 

categorisation process. Surgical pathological 

confirmed ground-glass nodules (GGNs) 

were collected from patients in two centres 

consisting of both non-IA and IA samples. 

First, a recurrent residual CNN based on U-

Net was used for segmentation of the GGNs. 

Next, two schemes (DL scheme and 

radiomics scheme) were designed to 

distinguish between non-IA and IA. In order 

to enhance the performance that may be 

gained from such a distinction, the prediction 

scores of two schemes were fused by 

applying an information fusion method. In the 

final stage, an observation study was done to 

contrast the execution of this scheme with 
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those of two radiologists by testing on an 

independent dataset. The new fusion scheme 

performed better than the DL scheme and 

radiomics scheme with respect to the risk 

classification performance. Also, higher 

accuracy was obtained for the fusion scheme 

than with two radiologists, although 

agreement between radiologists was high. 

Therefore, applying the AI method has been 

proven to be a useful manner in which the 

effectiveness of risk prediction in the 

performance of GGNs may be enhanced. In 

another study on classification of brain CT 

images, Gao, Hui, and Tian (2017) obtained 

high levels of precision and accuracy for 

fused CNN architecture, 2D CNN for three 

classes of AD, lesion and normal, 2D SIFT 

and 2D KAZE and 3D SIFT and 3D KAZE. 

The latter two were significant contributions, 

especially to fulfil the highly felt needs of 

Alzheimer’s disease for DL methods of 

categorisation of brain images.  

The aim of the study by Arnaldo et al. (2020) 

was to study an MRI radiomics-powered ML 

model's effectiveness and execution while 

determining the deep myometrial invasion 

(DMI) in endometrial cancer (EC) patients 

while also attempting to explore its clinical 

applicability. Pre-operative MRI scans of EC 

patients were used. The Random Forest 

wrapper identified the three most informative 

variables, which were used for ML training. 

The classifier reached an accuracy of 86% 

and 91%. Performance of radiologists also 

improved to 100% when they used ML. Thus, 

the feasibility of a radiomics-powered ML 

model for DMI detection on MR T2-w 

images to improve the performance of 

radiologists was demonstrated. 

The progress achieved so far on ML with 

respect to cancer detection and therapy were 

evaluated by El Naqa and Murphy (2015). 

Over half of the patients with cancer receive 

radiotherapy as part of their interventions. 

This has been found to be a significant 

treatment and is the only possible and viable 

treatment at advanced stages of localised 

cancer. Radiotherapy consists of a set of 

several processes starting from initial 

consultation to beyond treatment to ensure 

that the patients have received the prescribed 

radiation dose and are responding as 

expected. These processes have varying 

degrees of complexities and numbers involve 

several stages of refined human-machine 

interactions and decision making. The 

characteristics of these processes demand the 

use of ML algorithms for optimizing and 

automating them. These needs include 

radiation physics quality assurance, 

contouring and treatment planning, image-

guided radiotherapy, respiratory motion 

management, treatment response modelling, 

outcomes prediction and many other related 

aspects. As ML algorithms have the ability to 

learn from current context and generalize 

them into unseen tasks, improvements are 

possible both in the safety and efficacy of 

radiotherapy practices for better patient 

outcomes.  

A novel Computer-Aided Diagnosis (CAD) 

system for the identification and 

categorisation of breast masses in 

mammograms was proposed by Al-Masni et 

al. (2018) based on one of the regional DL 

techniques, a ROI-based CNN which was 

termed You Only Look Once (YOLO). The 

advantage of this model over the previous 

ones was that YOLO-based CAD systems 

have the potential to manage the 

identification and categorisation 

simultaneously in the same framework. Test 

results showed high precision in detecting 

mass locations of cells. It also differentiated 

malignant and benign lesions. Other similar 

models were proposed by Ribli et al. (2018) 

and Dhungel, Carneiro, and Bradley (2017) 

with more or less similar conclusions.  

It is essential to track the individual-

cell/object over a period of time in order to 

fully understand the drug treatment and the 

effects it has on cancer cells and video 

surveillance. One of the key issues of such an 

individual-cell/object tracking is to be able to 

simultaneously address the cell/object 

appearance variations which may be as a 

result of either intrinsic or extrinsic factors. 

Based on DL architecture, a robust feature 
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learning method has been put forward by 

Zhong et al. (2016) in order to construct 

discriminative appearance models without 

much pretraining. The DL component occurs 

after an unsupervised method is used first for 

learning the abstract feature using PCA 

analysis. The developed model validated the 

utilisation of two standard individual 

cell/object tracking benchmarks.   

 

3.6 Hypertension 

 

A new deep feature selection method based 

on deep architecture was proposed by Nezhad 

et al. (2016). The method used stacked auto-

encoders for feature representation in higher-

level abstraction. A novel feature learning 

approach was developed and applied to a 

specific problem of precision medicine 

problem. This problem was related to 

assessment and prioritisation of high risk 

factors for hypertension (HTN) in an 

especially vulnerable demographic subgroup 

(African-American). Some of the key risk 

factors impacting the left ventricular mass 

indexed to body surface area (LVMI) was 

found to be a useful indicator of heart damage 

risk and gave better results than other 

methods.  

 

3.7 Diabetes 

 

With regard to diabetic retinopathy, red 

lesions belonging to the group of 

microaneurysms and haemorrhages were 

found to be a prominent early sign. The 

traditional method of manual detection of 

fundus photographs has been found to be both 

time consuming and tedious due to their small 

size and lack of contrast. DL has the potential 

to address this and help here. This is because 

consistency, accuracy and feedback are 

possible with DL. An ensemble method for 

adapting to assess the red lesions in fundus 

images was proposed by Orlando et al. 

(2018). Both deep learning coupled with 

subject matter expertise were used here. CNN 

was used for learning features. These were 

enhanced by combining hand crafted features. 

Such ensemble vector of descriptors was used 

to identify true lesion candidates later with a 

Random Forest classifier. The integration of 

manual and DL methods trained by lesion-

level annotated data was very useful in 

improving precision and accuracy of 

detection and evaluation of red lesions in 

diabetic retinopathy.  

 

3.8 Imaging 

 

Currently available DL platforms are flexible. 

But they do not serve the specific purpose of 

medical image analysis. Considerable effort 

is required for adapting them for application 

in medical image analysis. TensorFlow APIs 

was used by Gibson et al. (2018) in an open 

source platform (NiftyNet) for deep learning 

in the medical imaging domain. The aim of 

NiftyNet was to speed up and simplify the 

development of solutions for these problems 

and to also offer a standard method for the 

dissemination of the research outputs that 

may be utilised, adapted and built upon. The 

steps involved in its implementation in typical 

medical imaging machine learning are: 

starting with established pre-trained 

networks, adapting the existing neural 

network architectures to new problems and 

rapid prototyping of new solutions. 

TensorBoard visualization of both 2D and 3D 

images are possible by default. Concrete 

examples of three deep-learning applications, 

including segmentation (of multiple 

abdominal organs by CT), regression (image 

regression for prediction of CT attenuation 

maps from brain MR images), image 

generation (simulation of ultrasound images 

of some anatomical poses) and representation 

learning have been presented for illustration 

of the important aspects of the platform. The 

NiftyNet architecture diagrammatised in the 

paper is reproduced in Fig 4. 
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Figure 4. NiftyNet architecture showing its components (Gibson et al., 2018) 

 

Some methods to overcome the need for a 

large volume of training data for 

segmentation of histopathological data 

required for DL learning were used by Van 

Eycke, Foucart, and Decaestecker (2019). 

The strategies for a significant section of 

annotated images required to automate the 

segmentation of histological images utilising 

deep learning were found through a review. 

The strategies consisted of the use of 

immunohistochemical markers as labels and 

realistic data augmentation, Generative 

Adversarial Networks (GAN) and transfer 

learning. Use of imperfect annotations and 

artificially generated data were also tested. 

However, the addition of real data coupled 

with high-quality annotations in the training 

set, even if fewer in numbers, was identified 

as being the safest way to enhance the 

functioning and effectiveness of a well 

configured deep neural network.  

Sudre et al. (2017) in their earlier studies, 

found that of late, DL has become a powerful 

and useful method that may be adopted in 

image analysis while also gaining popularity 

for segmentation of both 2D and 3D medical 

images. While the choice of network 

architecture is important, choice of loss 

function also appears to be equally important. 

When rare observations are targeted in the 

segmentation process, there is a likelihood of 

class imbalance of severe nature between 

candidate labels. This has the potential to 

result in sub-optimal performance. Strategies 

such as weighted cross-entropy function, the 

sensitivity function or the Dice loss function 

have been proposed as possible solutions. 

This paper evaluated the behaviour of these 

loss functions and their sensitivity to learning 

rate when tuned in the presence of different 

rates of label imbalance across 2D and 3D 

segmentation tasks. Class re-balancing 

properties of the Generalized Dice overlap 

was also evaluated.  

In addition to this, further research pertaining 

to the use of segmentation using DL, in order 

to tackle the concern regarding the lack of 

image-specific adaptation and the inadequate 

generalizability to previously unseen object 

classes related to CNN, Wang et al. (2018) 

suggested the adoption of a novel DL-based 

interactive segmentation framework by 

incorporating CNNs into a bounding box and 

scribble based segmentation pipeline. Image-
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specific fine tuning to make a CNN model 

adaptive to a specific test image was also used 

for both unsupervised (without additional 

user interactions) and supervised (with 

additional scribbles). Also, a weighted loss 

function was tested considering network and 

interaction-based uncertainty for the fine 

tuning. This network was applied to 2-D 

segmentation of multiple organs. In one case, 

foetal magnetic resonance (MR) slices with 

only two types of these organs annotated for 

training and 3-D segmentation of brain 

tumour core with the exclusion of oedema 

and whole brain tumour which included 

oedema from different MR sequences. In 

another case, only the tumour core in one MR 

sequence was annotated for training. The 

image-specific fine tuning with the proposed 

weighted loss function significantly improved 

segmentation accuracy. Increased robustness 

and precise results with fewer user 

interactions and lesser time were obtained 

compared to currently used methods. In 

respect of multiscale modelling, Sloot and 

Hoekstra (2010) observed that only models 

existed, but no methodology for modelling. In 

the paper, a dynamic systems approach was 

used for transmission of resistance in human 

immunodeficiency virus spreading and in-

stent restenosis in coronary artery disease.  

In a review, Shen, Wu, and Suk (2017) noted 

that recent advances in ML and DL have the 

potential to assist in categorising, locating as 

well as quantifying patterns in medical 

images. Ability to exploit hierarchical feature 

representations learned solely from data is 

exploited here. This new tool replaces hand-

designed features based on the domain-

specific knowledge. Thus DL is the state of 

the art developing very fast. There is 

enhanced performance in various medical 

applications, especially those related to 

medical imaging. A similar survey of DL in 

image analysis was also done by Litjens et al. 

(2017). The survey led to identification of the 

most successful DL method for medical 

imaging. CNN and their derivatives were 

rated as the top applications in most medical 

image analyses. However, the exact 

architecture, augmentation and pre-

processing, multi-scale network, network 

components and model hyperparameters were 

also key in determining the solutions of the 

problems. Similar conclusions were drawn in 

an editorial by Greenspan, Van Ginneken, 

and Summers (2016) in the IEEE 

Transactions in Medical Imaging journal.  

 

3.9 Drug categorisation and development 

 

The purpose of the paper by Aliper et al. 

(2016) was to show how the DNN can be 

adapted and augmented on large 

transcriptional response data sets in order to 

categorise various drugs into therapeutic 

categories being contingent upon their 

transcriptional profiles. DNN was trained 

using both gene level transcriptomic data and 

transcriptomic data processed using a 

pathway activation scoring algorithm for a 

pooled data set of samples perturbed with 

various concentrations of the drug from 6 to 

24 hours. In both pathway and gene level 

classification, DNN achieved high 

classification accuracy. It also significantly 

outperformed the support vector machine 

(SVM) model on all multiclass classification 

problems. Models based on pathway levels 

were better than gene level. Thus, a deep 

learning neural net trained on transcriptomic 

data was noted as being helpful in recognising 

the pharmacological properties of multiple 

drugs across different biological systems and 

conditions. The next stage is the utilisation of 

deep neural net confusion matrices for drug 

repositioning. This will be a proof of principle 

for the application of deep learning to drug 

discovery and development.  

Why ML becomes a transformative tool for 

drug discovery was explained by Duran‐

Frigola et al. (2019). Over the years, 

customary chemo-informatics methods were 

adopted in order to study the vector 

descriptors of compound structures as the 

input of their prediction tasks in a 

standardised manner. If a common vector 

format is available to represent biology and 

chemistry together, it can push biological 
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information into many current phases 

involved in the drug discovery pipeline. This 

enhances the accuracy of predictions and 

uncovering interlinkages between small 

molecules and other biological entities such 

as targets or diseases for more possible 

candidates of new drugs. This process has 

been diagrammatised in Fig. 5 reproduced 

from the paper. 

 

 
 

Figure 5. How DL helps drug discovery (Duran‐Frigola et al., 2019) 

 

In-silico toxicology is important in the 

context of efforts to reduce the use of animal 

experiments. In-silico toxicology can be 

useful for identifying hazards of compounds 

before synthesis, that is, at very early stages 

of drug development. It is helpful as a method 

to fill the gaps in the knowledge so that risks 

can be minimised through suitable strategies 

of product development. Thus, it is useful for 

both for chemical industries and regulatory 

agencies. ML and DL can be used in silico 

toxicology, even if data is scarce. The concept 

of adverse outcome pathways sets all 

techniques into a broader context. This can 

help to elucidate predictions by perfunctory 

insights (Hemmerich & Ecker, 2020). While 

making similar comments on use of DL in 

chemical toxicity issues, Gini et al. (2019) 

also mentioned about (Q)SAR model 

development, which leads to discovery of 

new products with less toxicity by learning 

the structural-chemical-biological 

relationships and their associated properties. 

The process of developing (Q)SAR model has 

been explained in the paper.  

 

 

3.10 Proteases 

 

Protease enzymes cleave by hydrolysing 

peptide bonds between specific amino acids 

in the target substrate proteins. Many of the 

substrates and the cleavage sites of the 

functional proteolysis have not been found 

yet. If accurate predictors of the substrates 

and cleavage sites are available, it would 

facilitate comprehension of the features and 

physiological roles of proteases. DL offers a 

promising approach for the solution of this 

problem. Li, et al. (2020) proposed 

DeepCleave as the first such deep DL-based 

predictor. The input for DeepCleave was the 

protein substrate sequence data and CNN was 

used with transfer learning to train accurate 

predictive models. High quality cleavage site 

features extracted from the substrate 

sequences, the implementation of transfer 

learning, multiple kernels and attention layer 

in the conception of the deep network makes 

the predictor highly efficient. Empirical tests 

against many conventional methods proved 

superiority of DeepCleave in predicting the 

substrate-cleavage sites of caspase and matrix 

metalloprotease. 
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3.11 Human emotions 

 

DL methods are being increasingly attractive 

to analyse multimodal physiological signals 

to recognize human emotions. Conventional 

models of deep emotion classifiers are not 

effective enough. Hence, Yin et al. (2017) 

proposed a multiple-fusion-layer based 

ensemble classifier of stacked autoencoder 

(MESAE). It recognised emotions by 

identifying their deep structure based on a 

physiological data-driven approach. The 

performance of this model was validated by 

comparing it against the existing best 

emotions classifier and the superior nature of 

the proposed model in terms of classification 

rate was established.  

 

3.12 Micro- and nano robotics 

 

A possible extension of DL may be 

application of micro and nano- robots for 

various biomedical needs. A review of such 

tools based on their use types have been 

discussed with diagrammatic examples by Li, 

Esteban-Fernández de Ávila, Gao, Zhang, 

and Wang (2017). Many developments and 

many research works have been reported on 

this topic, which need to be treated as a 

separate topic. 

 

3.13 Text mining 

 

According to Spasic et al. (2005) for 

sophisticated text mining in biomedicine, 

lexical, syntactic and semantic layers of text 

annotation are required. Rule-based ML are 

necessary for such tasks. Ontologies can be 

used to represent specific domains of 

knowledge. Thus, both ontologies and 

terminological lexicons can be combined to 

obtain good results with biomedical text 

mining. Other variables of differentiation can 

be used at finer levels of analysis. Many 

recent developments in the area of text mining 

can be tried and adapted to biomedicine also.  

In another work on the same topic, Jiang, Li, 

Huang, and Jin (2015) proposed a model in 

which biomedical domain-specific word 

embedding incorporating stem, chunk and 

entity to train word embeddings. Two DL 

architectures were used for two biomedical 

text mining tasks. Using them, word 

embeddings were comparatively evaluated 

with other models. These two models 

outperformed other general purpose word 

embeddings used for biomedical text mining 

tasks. 

 

4. Discussions and Conclusions  
 

The This overview of DL and its potential to 

contribute to the field of biomedicine has 

revealed that DL can be applied to almost the 

entire range of healthcare. However, the 

solutions must be context specific and should 

be tailored to all healthcare requirements and 

challenges. For each aspect of healthcare 

system, appropriate DL needs to be 

developed. Many times, it may involve a 

combination of DL with non-DL or one DL 

with another DL method. These also consist 

of certain limitations and obstacles. The 

solutions for them also depend on the context 

and the way the DL system has been used.  

In this review, papers were discussed in 

various sections. Such categorisations are 

largely arbitrary. Many papers can be 

categorised in more than one way. Such 

problems are inherent in any review.  

From the number of papers reviewed in 

different sections, it seems more research was 

done on cancer and medical imaging aspects. 

A notable miss in the papers was that no paper 

was available on DL applications for acute 

health problems and even in the case of 

chronic problems, not all diseases have been 

addressed. There was only one paper each on 

hypertension, diabetic retinopathy and 

psychological problems of emotions. 

Probably these are areas for future intensive 

research. It is also possible that papers on 

these aspects were missed due to the  nature 

of literature search as explained in the 

limitations of this work below.  

The primary implication of this research for 

the academia is that there is a large deficit of 
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papers on many chronic diseases like 

cardiology, diabetes and immunodeficient 

diseases and a total deficit of acute health 

problems. This may be indicative of the need 

for more intensified research in the deficit 

areas. The primary implication of this 

research for health practitioners is that there 

is a lot of substantial research available on the 

applications of DL to cancer and medical 

imaging which may be adapted to be utilised 

not only in theory but also in practice.
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